Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add ngxtm/devkit --skill "docs-seeker"
Install specific skill from multi-skill repository
# Description
Search technical documentation using executable scripts to detect query type, fetch from llms.txt sources (context7.com), and analyze results. Use when user needs: (1) Topic-specific documentation (features/components/concepts), (2) Library/framework documentation, (3) GitHub repository analysis, (4) Documentation discovery with automated agent distribution strategy
# SKILL.md
name: docs-seeker
description: "Search technical documentation using executable scripts to detect query type, fetch from llms.txt sources (context7.com), and analyze results. Use when user needs: (1) Topic-specific documentation (features/components/concepts), (2) Library/framework documentation, (3) GitHub repository analysis, (4) Documentation discovery with automated agent distribution strategy"
version: 3.1.0
Documentation Discovery via Scripts
Overview
Script-first documentation discovery using llms.txt standard.
Execute scripts to handle entire workflow - no manual URL construction needed.
Primary Workflow
ALWAYS execute scripts in this order:
# 1. DETECT query type (topic-specific vs general)
node ~/.{TOOL}/skills/docs-seeker/scripts/detect-topic.js "<user query>"
# 2. FETCH documentation using script output
node ~/.{TOOL}/skills/docs-seeker/scripts/fetch-docs.js "<user query>"
# 3. ANALYZE results (if multiple URLs returned)
cat llms.txt | node ~/.{TOOL}/skills/docs-seeker/scripts/analyze-llms-txt.js -
Scripts handle URL construction, fallback chains, and error handling automatically.
Scripts
detect-topic.js - Classify query type
- Identifies topic-specific vs general queries
- Extracts library name + topic keyword
- Returns JSON:
{topic, library, isTopicSpecific} - Zero-token execution
fetch-docs.js - Retrieve documentation
- Constructs context7.com URLs automatically
- Handles fallback: topic β general β error
- Outputs llms.txt content or error message
- Zero-token execution
analyze-llms-txt.js - Process llms.txt
- Categorizes URLs (critical/important/supplementary)
- Recommends agent distribution (1 agent, 3 agents, 7 agents, phased)
- Returns JSON with strategy
- Zero-token execution
Workflow References
Topic-Specific Search - Fastest path (10-15s)
General Library Search - Comprehensive coverage (30-60s)
Repository Analysis - Fallback strategy
References
context7-patterns.md - URL patterns, known repositories
errors.md - Error handling, fallback strategies
advanced.md - Edge cases, versioning, multi-language
Execution Principles
- Scripts first - Execute scripts instead of manual URL construction
- Zero-token overhead - Scripts run without context loading
- Automatic fallback - Scripts handle topic β general β error chains
- Progressive disclosure - Load workflows/references only when needed
- Agent distribution - Scripts recommend parallel agent strategy
Quick Start
Topic query: "How do I use date picker in shadcn?"
node ~/.{TOOL}/skills/docs-seeker/scripts/detect-topic.js "<query>" # β {topic, library, isTopicSpecific}
node ~/.{TOOL}/skills/docs-seeker/scripts/fetch-docs.js "<query>" # β 2-3 URLs
# Read URLs with WebFetch
General query: "Documentation for Next.js"
node ~/.{TOOL}/skills/docs-seeker/scripts/detect-topic.js "<query>" # β {isTopicSpecific: false}
node ~/.{TOOL}/skills/docs-seeker/scripts/fetch-docs.js "<query>" # β 8+ URLs
cat llms.txt | node ~/.{TOOL}/skills/docs-seeker/scripts/analyze-llms-txt.js - # β {totalUrls, distribution}
# Deploy agents per recommendation
Environment
Scripts load .env: process.env > ~/.{TOOL}/skills/docs-seeker/.env > ~/.{TOOL}/skills/.env > .{TOOL}/.env
See .env.example for configuration options.
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.