Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add ngxtm/devkit --skill "Structured output"
Install specific skill from multi-skill repository
# Description
Build Azure AI Foundry agents using the Microsoft Agent Framework Python SDK (agent-framework-azure-ai). Use when creating persistent agents with AzureAIAgentsProvider, using hosted tools (code interpreter, file search, web search), integrating MCP servers, managing conversation threads, or implementing streaming responses. Covers function tools, structured outputs, and multi-tool agents.
# SKILL.md
---
name: agent-framework-azure-hosted-agents
description: Build Azure AI Foundry agents using the Microsoft Agent Framework Python SDK (agent-framework-azure-ai). Use when creating persistent agents with AzureAIAgentsProvider, using hosted tools (code interpreter, file search, web search), integrating MCP servers, managing conversation threads, or implementing streaming responses. Covers function tools, structured outputs, and multi-tool agents.
---
# Agent Framework Azure Hosted Agents
Build persistent agents on Azure AI Foundry using the Microsoft Agent Framework Python SDK.
## Architecture
User Query โ AzureAIAgentsProvider โ Azure AI Agent Service (Persistent)
โ
Agent.run() / Agent.run_stream()
โ
Tools: Functions | Hosted (Code/Search/Web) | MCP
โ
AgentThread (conversation persistence)
## Installation
```bash
# Full framework (recommended)
pip install agent-framework --pre
# Or Azure-specific package only
pip install agent-framework-azure-ai --pre
Environment Variables
export AZURE_AI_PROJECT_ENDPOINT="https://<project>.services.ai.azure.com/api/projects/<project-id>"
export AZURE_AI_MODEL_DEPLOYMENT_NAME="gpt-4o-mini"
export BING_CONNECTION_ID="your-bing-connection-id" # For web search
Authentication
from azure.identity.aio import AzureCliCredential, DefaultAzureCredential
# Development
credential = AzureCliCredential()
# Production
credential = DefaultAzureCredential()
Core Workflow
Basic Agent
import asyncio
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential
async def main():
async with (
AzureCliCredential() as credential,
AzureAIAgentsProvider(credential=credential) as provider,
):
agent = await provider.create_agent(
name="MyAgent",
instructions="You are a helpful assistant.",
)
result = await agent.run("Hello!")
print(result.text)
asyncio.run(main())
Agent with Function Tools
from typing import Annotated
from pydantic import Field
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential
def get_weather(
location: Annotated[str, Field(description="City name to get weather for")],
) -> str:
"""Get the current weather for a location."""
return f"Weather in {location}: 72ยฐF, sunny"
def get_current_time() -> str:
"""Get the current UTC time."""
from datetime import datetime, timezone
return datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S UTC")
async def main():
async with (
AzureCliCredential() as credential,
AzureAIAgentsProvider(credential=credential) as provider,
):
agent = await provider.create_agent(
name="WeatherAgent",
instructions="You help with weather and time queries.",
tools=[get_weather, get_current_time], # Pass functions directly
)
result = await agent.run("What's the weather in Seattle?")
print(result.text)
Agent with Hosted Tools
from agent_framework import (
HostedCodeInterpreterTool,
HostedFileSearchTool,
HostedWebSearchTool,
)
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential
async def main():
async with (
AzureCliCredential() as credential,
AzureAIAgentsProvider(credential=credential) as provider,
):
agent = await provider.create_agent(
name="MultiToolAgent",
instructions="You can execute code, search files, and search the web.",
tools=[
HostedCodeInterpreterTool(),
HostedWebSearchTool(name="Bing"),
],
)
result = await agent.run("Calculate the factorial of 20 in Python")
print(result.text)
Streaming Responses
async def main():
async with (
AzureCliCredential() as credential,
AzureAIAgentsProvider(credential=credential) as provider,
):
agent = await provider.create_agent(
name="StreamingAgent",
instructions="You are a helpful assistant.",
)
print("Agent: ", end="", flush=True)
async for chunk in agent.run_stream("Tell me a short story"):
if chunk.text:
print(chunk.text, end="", flush=True)
print()
Conversation Threads
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential
async def main():
async with (
AzureCliCredential() as credential,
AzureAIAgentsProvider(credential=credential) as provider,
):
agent = await provider.create_agent(
name="ChatAgent",
instructions="You are a helpful assistant.",
tools=[get_weather],
)
# Create thread for conversation persistence
thread = agent.get_new_thread()
# First turn
result1 = await agent.run("What's the weather in Seattle?", thread=thread)
print(f"Agent: {result1.text}")
# Second turn - context is maintained
result2 = await agent.run("What about Portland?", thread=thread)
print(f"Agent: {result2.text}")
# Save thread ID for later resumption
print(f"Conversation ID: {thread.conversation_id}")
Structured Outputs
from pydantic import BaseModel, ConfigDict
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential
class WeatherResponse(BaseModel):
model_config = ConfigDict(extra="forbid")
location: str
temperature: float
unit: str
conditions: str
async def main():
async with (
AzureCliCredential() as credential,
AzureAIAgentsProvider(credential=credential) as provider,
):
agent = await provider.create_agent(
name="StructuredAgent",
instructions="Provide weather information in structured format.",
response_format=WeatherResponse,
)
result = await agent.run("Weather in Seattle?")
weather = WeatherResponse.model_validate_json(result.text)
print(f"{weather.location}: {weather.temperature}ยฐ{weather.unit}")
Provider Methods
| Method | Description |
|---|---|
create_agent() |
Create new agent on Azure AI service |
get_agent(agent_id) |
Retrieve existing agent by ID |
as_agent(sdk_agent) |
Wrap SDK Agent object (no HTTP call) |
Hosted Tools Quick Reference
| Tool | Import | Purpose |
|---|---|---|
HostedCodeInterpreterTool |
from agent_framework import HostedCodeInterpreterTool |
Execute Python code |
HostedFileSearchTool |
from agent_framework import HostedFileSearchTool |
Search vector stores |
HostedWebSearchTool |
from agent_framework import HostedWebSearchTool |
Bing web search |
HostedMCPTool |
from agent_framework import HostedMCPTool |
Service-managed MCP |
MCPStreamableHTTPTool |
from agent_framework import MCPStreamableHTTPTool |
Client-managed MCP |
Complete Example
import asyncio
from typing import Annotated
from pydantic import BaseModel, Field
from agent_framework import (
HostedCodeInterpreterTool,
HostedWebSearchTool,
MCPStreamableHTTPTool,
)
from agent_framework.azure import AzureAIAgentsProvider
from azure.identity.aio import AzureCliCredential
def get_weather(
location: Annotated[str, Field(description="City name")],
) -> str:
"""Get weather for a location."""
return f"Weather in {location}: 72ยฐF, sunny"
class AnalysisResult(BaseModel):
summary: str
key_findings: list[str]
confidence: float
async def main():
async with (
AzureCliCredential() as credential,
MCPStreamableHTTPTool(
name="Docs MCP",
url="https://learn.microsoft.com/api/mcp",
) as mcp_tool,
AzureAIAgentsProvider(credential=credential) as provider,
):
agent = await provider.create_agent(
name="ResearchAssistant",
instructions="You are a research assistant with multiple capabilities.",
tools=[
get_weather,
HostedCodeInterpreterTool(),
HostedWebSearchTool(name="Bing"),
mcp_tool,
],
)
thread = agent.get_new_thread()
# Non-streaming
result = await agent.run(
"Search for Python best practices and summarize",
thread=thread,
)
print(f"Response: {result.text}")
# Streaming
print("\nStreaming: ", end="")
async for chunk in agent.run_stream("Continue with examples", thread=thread):
if chunk.text:
print(chunk.text, end="", flush=True)
print()
# Structured output
result = await agent.run(
"Analyze findings",
thread=thread,
response_format=AnalysisResult,
)
analysis = AnalysisResult.model_validate_json(result.text)
print(f"\nConfidence: {analysis.confidence}")
if __name__ == "__main__":
asyncio.run(main())
Conventions
- Always use async context managers:
async with provider: - Pass functions directly to
tools=parameter (auto-converted to AIFunction) - Use
Annotated[type, Field(description=...)]for function parameters - Use
get_new_thread()for multi-turn conversations - Prefer
HostedMCPToolfor service-managed MCP,MCPStreamableHTTPToolfor client-managed
Reference Files
- references/tools.md: Detailed hosted tool patterns
- references/mcp.md: MCP integration (hosted + local)
- references/threads.md: Thread and conversation management
- references/advanced.md: OpenAPI, citations, structured outputs
```
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.