Language-independent tokenizer treating text as raw Unicode. Supports BPE and Unigram algorithms. Fast (50k sentences/sec), lightweight (6MB memory), deterministic vocabulary. Used by T5, ALBERT,...
Vision-language pre-training framework bridging frozen image encoders and LLMs. Use when you need image captioning, visual question answering, image-text retrieval, or multimodal chat with...
Reduce LLM size and accelerate inference using pruning techniques like Wanda and SparseGPT. Use when compressing models without retraining, achieving 50% sparsity with minimal accuracy loss, or...
Framework for state-of-the-art sentence, text, and image embeddings. Provides 5000+ pre-trained models for semantic similarity, clustering, and retrieval. Supports multilingual, domain-specific,...
Implements and trains LLMs using Lightning AI's LitGPT with 20+ pretrained architectures (Llama, Gemma, Phi, Qwen, Mistral). Use when need clean model implementations, educational understanding of...
Optimizes LLM inference with NVIDIA TensorRT for maximum throughput and lowest latency. Use for production deployment on NVIDIA GPUs (A100/H100), when you need 10-100x faster inference than...
Train Mixture of Experts (MoE) models using DeepSpeed or HuggingFace. Use when training large-scale models with limited compute (5Γ cost reduction vs dense models), implementing sparse...
Parameter-efficient fine-tuning for LLMs using LoRA, QLoRA, and 25+ methods. Use when fine-tuning large models (7B-70B) with limited GPU memory, when you need to train <1% of parameters with...
Serverless GPU cloud platform for running ML workloads. Use when you need on-demand GPU access without infrastructure management, deploying ML models as APIs, or running batch jobs with automatic scaling.
Serves LLMs with high throughput using vLLM's PagedAttention and continuous batching. Use when deploying production LLM APIs, optimizing inference latency/throughput, or serving models with...
Foundation model for image segmentation with zero-shot transfer. Use when you need to segment any object in images using points, boxes, or masks as prompts, or automatically generate all object...
Managed vector database for production AI applications. Fully managed, auto-scaling, with hybrid search (dense + sparse), metadata filtering, and namespaces. Low latency (<100ms p95). Use for...
Runs LLM inference on CPU, Apple Silicon, and consumer GPUs without NVIDIA hardware. Use for edge deployment, M1/M2/M3 Macs, AMD/Intel GPUs, or when CUDA is unavailable. Supports GGUF quantization...
Extend context windows of transformer models using RoPE, YaRN, ALiBi, and position interpolation techniques. Use when processing long documents (32k-128k+ tokens), extending pre-trained models...
RNN+Transformer hybrid with O(n) inference. Linear time, infinite context, no KV cache. Train like GPT (parallel), infer like RNN (sequential). Linux Foundation AI project. Production at Windows,...
Evaluates LLMs across 100+ benchmarks from 18+ harnesses (MMLU, HumanEval, GSM8K, safety, VLM) with multi-backend execution. Use when needing scalable evaluation on local Docker, Slurm HPC, or...
Provides guidance for performing causal interventions on PyTorch models using pyvene's declarative intervention framework. Use when conducting causal tracing, activation patching, interchange...
Framework for building LLM-powered applications with agents, chains, and RAG. Supports multiple providers (OpenAI, Anthropic, Google), 500+ integrations, ReAct agents, tool calling, memory...
Fast structured generation and serving for LLMs with RadixAttention prefix caching. Use for JSON/regex outputs, constrained decoding, agentic workflows with tool calls, or when you need 5Γ faster...
Accelerate LLM inference using speculative decoding, Medusa multiple heads, and lookahead decoding techniques. Use when optimizing inference speed (1.5-3.6Γ speedup), reducing latency for...