Data framework for building LLM applications with RAG. Specializes in document ingestion (300+ connectors), indexing, and querying. Features vector indices, query engines, agents, and multi-modal...
Best practices for the Common utilities package in LlamaFarm. Covers HuggingFace Hub integration, GGUF model management, and shared utilities.
Generate, evaluate, and iterate on agent skills using HuggingFace's Upskill tool. Transfer domain expertise from frontier models to smaller/local models.
Meta's 7-8B specialized moderation model for LLM input/output filtering. 6 safety categories - violence/hate, sexual content, weapons, substances, self-harm, criminal planning. 94-95% accuracy....
Fine-tune LLMs using reinforcement learning with TRL - SFT for instruction tuning, DPO for preference alignment, PPO/GRPO for reward optimization, and reward model training. Use when need RLHF,...
Fine-tune LLMs using reinforcement learning with TRL - SFT for instruction tuning, DPO for preference alignment, PPO/GRPO for reward optimization, and reward model training. Use when need RLHF,...
Fine-tune LLMs using reinforcement learning with TRL - SFT for instruction tuning, DPO for preference alignment, PPO/GRPO for reward optimization, and reward model training. Use when need RLHF,...
Estimate GPU memory usage for Megatron-based MoE (Mixture of Experts) and dense models. Use when users need to (1) estimate memory from HuggingFace model configs (DeepSeek-V3, Qwen, etc.), (2)...
Distributed training orchestration across clusters. Scales PyTorch/TensorFlow/HuggingFace from laptop to 1000s of nodes. Built-in hyperparameter tuning with Ray Tune, fault tolerance, elastic...
Quantizes LLMs to 8-bit or 4-bit for 50-75% memory reduction with minimal accuracy loss. Use when GPU memory is limited, need to fit larger models, or want faster inference. Supports INT8, NF4,...
State-space model with O(n) complexity vs Transformers' O(nΒ²). 5Γ faster inference, million-token sequences, no KV cache. Selective SSM with hardware-aware design. Mamba-1 (d_state=16) and Mamba-2...
Expert guidance for fine-tuning LLMs with LLaMA-Factory - WebUI no-code, 100+ models, 2/3/4/5/6/8-bit QLoRA, multimodal support
Expert guidance for fine-tuning LLMs with Axolotl - YAML configs, 100+ models, LoRA/QLoRA, DPO/KTO/ORPO/GRPO, multimodal support
Language-independent tokenizer treating text as raw Unicode. Supports BPE and Unigram algorithms. Fast (50k sentences/sec), lightweight (6MB memory), deterministic vocabulary. Used by T5, ALBERT,...
Scalable data processing for ML workloads. Streaming execution across CPU/GPU, supports Parquet/CSV/JSON/images. Integrates with Ray Train, PyTorch, TensorFlow. Scales from single machine to 100s...
RNN+Transformer hybrid with O(n) inference. Linear time, infinite context, no KV cache. Train like GPT (parallel), infer like RNN (sequential). Linux Foundation AI project. Production at Windows,...
Open-source embedding database for AI applications. Store embeddings and metadata, perform vector and full-text search, filter by metadata. Simple 4-function API. Scales from notebooks to...
Large Language and Vision Assistant. Enables visual instruction tuning and image-based conversations. Combines CLIP vision encoder with Vicuna/LLaMA language models. Supports multi-turn image...
Provides guidance for PyTorch-native agentic RL using torchforge, Meta's library separating infra from algorithms. Use when you want clean RL abstractions, easy algorithm experimentation, or...
Provides guidance for enterprise-grade RL training using miles, a production-ready fork of slime. Use when training large MoE models with FP8/INT4, needing train-inference alignment, or requiring...