>
|
|
Help users build effective AI applications. Use when someone is building with LLMs, writing prompts, designing AI features, implementing RAG, creating agents, running evals, or trying to improve...
Simplest distributed training API. 4 lines to add distributed support to any PyTorch script. Unified API for DeepSpeed/FSDP/Megatron/DDP. Automatic device placement, mixed precision...
Simplest distributed training API. 4 lines to add distributed support to any PyTorch script. Unified API for DeepSpeed/FSDP/Megatron/DDP. Automatic device placement, mixed precision...
Use this skill for reinforcement learning tasks including training RL agents (PPO, SAC, DQN, TD3, DDPG, A2C, etc.), creating custom Gym environments, implementing callbacks for monitoring and...
Use this skill for reinforcement learning tasks including training RL agents (PPO, SAC, DQN, TD3, DDPG, A2C, etc.), creating custom Gym environments, implementing callbacks for monitoring and...
AI SDK 6 Beta overview, agents, tool approval, Groq (Llama), and Vercel AI Gateway. Key breaking changes from v5 and new patterns.
Runs LLM inference on CPU, Apple Silicon, and consumer GPUs without NVIDIA hardware. Use for edge deployment, M1/M2/M3 Macs, AMD/Intel GPUs, or when CUDA is unavailable. Supports GGUF quantization...
Runs LLM inference on CPU, Apple Silicon, and consumer GPUs without NVIDIA hardware. Use for edge deployment, M1/M2/M3 Macs, AMD/Intel GPUs, or when CUDA is unavailable. Supports GGUF quantization...
Audit AI systems for safety, bias, and responsible deployment
Generate and edit images using the Gemini API (Nano Banana). Use this skill when creating images from text prompts, editing existing images, applying style transfers, generating logos with text,...
Production-ready reinforcement learning algorithms (PPO, SAC, DQN, TD3, DDPG, A2C) with scikit-learn-like API. Use for standard RL experiments, quick prototyping, and well-documented algorithm...
|
|
Local text-to-speech via sherpa-onnx (offline, no cloud)
Local text-to-speech via sherpa-onnx (offline, no cloud)
High-level PyTorch framework with Trainer class, automatic distributed training (DDP/FSDP/DeepSpeed), callbacks system, and minimal boilerplate. Scales from laptop to supercomputer with same code....
|