Simplest distributed training API. 4 lines to add distributed support to any PyTorch script. Unified API for DeepSpeed/FSDP/Megatron/DDP. Automatic device placement, mixed precision...
Fast tokenizers optimized for research and production. Rust-based implementation tokenizes 1GB in <20 seconds. Supports BPE, WordPiece, and Unigram algorithms. Train custom vocabularies, track...
Simplest distributed training API. 4 lines to add distributed support to any PyTorch script. Unified API for DeepSpeed/FSDP/Megatron/DDP. Automatic device placement, mixed precision...
Fast tokenizers optimized for research and production. Rust-based implementation tokenizes 1GB in <20 seconds. Supports BPE, WordPiece, and Unigram algorithms. Train custom vocabularies, track...
Fast tokenizers optimized for research and production. Rust-based implementation tokenizes 1GB in <20 seconds. Supports BPE, WordPiece, and Unigram algorithms. Train custom vocabularies, track...
Expert guidance for working with Hugging Face Transformers library for NLP, computer vision, and multimodal AI tasks.
Evaluates LLMs across 60+ academic benchmarks (MMLU, HumanEval, GSM8K, TruthfulQA, HellaSwag). Use when benchmarking model quality, comparing models, reporting academic results, or tracking...
Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when...
Meta's 7-8B specialized moderation model for LLM input/output filtering. 6 safety categories - violence/hate, sexual content, weapons, substances, self-harm, criminal planning. 94-95% accuracy....
State-of-the-art text-to-image generation with Stable Diffusion models via HuggingFace Diffusers. Use when generating images from text prompts, performing image-to-image translation, inpainting,...
Fine-tune LLMs using reinforcement learning with TRL - SFT for instruction tuning, DPO for preference alignment, PPO/GRPO for reward optimization, and reward model training. Use when need RLHF,...
Evaluates code generation models across HumanEval, MBPP, MultiPL-E, and 15+ benchmarks with pass@k metrics. Use when benchmarking code models, comparing coding abilities, testing multi-language...
Distributed training orchestration across clusters. Scales PyTorch/TensorFlow/HuggingFace from laptop to 1000s of nodes. Built-in hyperparameter tuning with Ray Tune, fault tolerance, elastic...
Quantizes LLMs to 8-bit or 4-bit for 50-75% memory reduction with minimal accuracy loss. Use when GPU memory is limited, need to fit larger models, or want faster inference. Supports INT8, NF4,...
Parameter-efficient fine-tuning for LLMs using LoRA, QLoRA, and 25+ methods. Use when fine-tuning large models (7B-70B) with limited GPU memory, when you need to train <1% of parameters with...
State-space model with O(n) complexity vs Transformers' O(nΒ²). 5Γ faster inference, million-token sequences, no KV cache. Selective SSM with hardware-aware design. Mamba-1 (d_state=16) and Mamba-2...
Train Mixture of Experts (MoE) models using DeepSpeed or HuggingFace. Use when training large-scale models with limited compute (5Γ cost reduction vs dense models), implementing sparse...
Evaluates LLMs across 60+ academic benchmarks (MMLU, HumanEval, GSM8K, TruthfulQA, HellaSwag). Use when benchmarking model quality, comparing models, reporting academic results, or tracking...
Post-training 4-bit quantization for LLMs with minimal accuracy loss. Use for deploying large models (70B, 405B) on consumer GPUs, when you need 4Γ memory reduction with <2% perplexity...
GGUF format and llama.cpp quantization for efficient CPU/GPU inference. Use when deploying models on consumer hardware, Apple Silicon, or when needing flexible quantization from 2-8 bit without...