anomalyarmor

armor-tags

1
0
# Install this skill:
npx skills add anomalyarmor/agents --skill "armor-tags"

Install specific skill from multi-skill repository

# Description

Classify and govern data with tags. Handles "tag this table as PII", "apply financial tag", "list tags", "classify data", "add governance label".

# SKILL.md


name: armor-tags
description: Classify and govern data with tags. Handles "tag this table as PII", "apply financial tag", "list tags", "classify data", "add governance label".
hooks:
PreToolUse:
- matcher: "Bash"
hooks:
- type: command
command: "python ${CLAUDE_PLUGIN_ROOT}/scripts/ensure-auth.py"
once: true


Data Classification with Tags

Organize and classify database objects with tags for governance, compliance, and business categorization.

Prerequisites

  • AnomalyArmor API key configured (~/.armor/config.yaml or ARMOR_API_KEY env var)
  • Python SDK installed (pip install anomalyarmor)

When to Use

  • "Tag this table as PII"
  • "Apply financial reporting tag"
  • "List all tags for this asset"
  • "Mark these columns as sensitive"
  • "Classify this data as confidential"
  • "Add governance labels"

Concepts

Tag Categories

  • business: Business domain tags (e.g., "finance", "marketing", "sales")
  • technical: Technical classification (e.g., "fact_table", "dimension", "staging")
  • governance: Compliance and security (e.g., "pii", "confidential", "gdpr")

Tag Scope

Tags can be applied to:
- Tables: Full table classification
- Columns: Column-level classification (for PII, sensitive data)

Steps

Creating a Tag

  1. Identify the asset and object (table or column) to tag
  2. Choose the tag name and category
  3. Call client.tags.create() with the object path

Applying Multiple Tags

  1. Prepare list of tag names to apply
  2. Prepare list of object paths
  3. Call client.tags.apply() for batch operations

Bulk Tagging Across Assets

  1. Create tag name
  2. List asset IDs to tag
  3. Call client.tags.bulk_apply()

Example Usage

List Existing Tags

from anomalyarmor import Client

client = Client()

# List all tags for an asset
tags = client.tags.list(asset="postgresql.analytics")
for tag in tags:
    print(f"  {tag.name} ({tag.category}): {tag.object_path}")

# Filter by category
governance_tags = client.tags.list(
    asset="postgresql.analytics",
    category="governance"
)

Tag a Table as PII

tag = client.tags.create(
    asset="postgresql.analytics",
    name="pii_data",
    object_path="public.customers",
    object_type="table",
    category="governance",
    description="Contains personally identifiable information"
)
print(f"Created tag: {tag.id}")

Tag a Column as Sensitive

tag = client.tags.create(
    asset="postgresql.analytics",
    name="sensitive",
    object_path="public.customers.email",
    object_type="column",
    category="governance"
)

Apply Multiple Tags to Multiple Tables

result = client.tags.apply(
    asset="postgresql.analytics",
    tag_names=["financial_reporting", "quarterly_data"],
    object_paths=["gold.fact_orders", "gold.fact_revenue", "gold.dim_customers"],
    category="business"
)
print(f"Applied: {result.applied}, Failed: {result.failed}")

Tag Multiple Assets

result = client.tags.bulk_apply(
    tag_name="production_critical",
    asset_ids=["postgresql.analytics", "postgresql.warehouse", "snowflake.main"],
    category="technical"
)
print(f"Tagged {result.applied} assets")

Expected Output

Tags for postgresql.analytics:
  pii_data (governance): public.customers
  financial_reporting (business): gold.fact_orders
  quarterly_data (business): gold.fact_revenue
  production_critical (technical): asset-level

By Category:
  governance: 3 tags
  business: 5 tags
  technical: 2 tags

Follow-up Actions

  • After tagging PII: Set up access controls and audit logging
  • After business classification: Use tags to filter dashboards and reports
  • After technical tagging: Use tags to prioritize monitoring
  • To view tagged data: Filter assets by tag in the AnomalyArmor dashboard

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.