escotilha

autonomous-dev

0
0
# Install this skill:
npx skills add escotilha/claude-kit --skill "autonomous-dev"

Install specific skill from multi-skill repository

# Description

Autonomous coding agent that breaks features into small user stories and implements them iteratively with fresh context per iteration. Use when asked to: build a feature autonomously, create a PRD, implement a feature from scratch, run an autonomous coding loop, break down a feature into user stories. Triggers on: autonomous agent, build this autonomously, autonomous mode, implement this feature, create prd, prd to json, user stories, iterative implementation, ralph.

# SKILL.md


name: autonomous-dev
description: "Autonomous coding agent that breaks features into small user stories and implements them iteratively with fresh context per iteration. Use when asked to: build a feature autonomously, create a PRD, implement a feature from scratch, run an autonomous coding loop, break down a feature into user stories. Triggers on: autonomous agent, build this autonomously, autonomous mode, implement this feature, create prd, prd to json, user stories, iterative implementation, ralph."
user-invocable: true
context: fork


Autonomous Coding Agent

An autonomous workflow that breaks features into small, testable user stories and implements them one at a time with fresh context per iteration.

Core Architecture

Memory persists across iterations via:

  • prd.json - Task list with completion status
  • progress.md - Learnings and implementation notes
  • AGENTS.md - Long-term patterns for the repository
  • Git history - All code changes
  • Memory MCP - Cross-codebase learnings (patterns, mistakes, preferences)

Each iteration is stateless - read these files to understand context.


Memory Integration (Cross-Codebase Learning)

The agent uses the Memory MCP server to learn across different projects. This enables:

  • Remembering patterns that work well
  • Avoiding mistakes made in other codebases
  • Applying user preferences consistently

Memory Entity Types

Type Purpose Example
pattern Reusable solutions pattern:early-returns
mistake Things to avoid mistake:env-in-repo
preference User's preferred approaches preference:package-manager
tech-insight Framework-specific knowledge tech-insight:supabase-rls
architecture-decision High-level design choices architecture-decision:multi-tenant

When to Query Memory

  1. Phase 1 Start - Query preferences and patterns before asking clarifying questions
  2. Phase 3 Start - Load relevant tech-insights for the detected stack
  3. Before Implementation - Check for related mistakes/patterns

When to Save to Memory

  1. After successful story - Extract reusable patterns
  2. After fixing a bug - Save as mistake to avoid
  3. When discovering codebase convention - Save if broadly applicable

Entry Point Detection

When this skill activates, determine which phase to enter:

Condition Action
No prd.json exists Start Phase 1 (PRD Generation)
prd.json exists but no markdown PRD Start Phase 2 (JSON Conversion)
prd.json exists with pending stories Start Phase 3 (Autonomous Loop)
All stories passes: true Report completion, ask if more work needed

First Action: Check for existing files:

ls -la prd.json progress.md tasks/*.md 2>/dev/null

Phase 1: PRD Generation

Goal: Create a Product Requirements Document from a feature idea.

Step 1.0: Load User Preferences from Memory

First action: Query the Memory MCP for user preferences and patterns:

mcp__memory__search_nodes({ query: "preference" })
mcp__memory__search_nodes({ query: "pattern" })
mcp__memory__search_nodes({ query: "architecture-decision" })

Apply learned preferences:

  • Package manager preference (pnpm vs npm vs yarn)
  • Deployment targets (Railway, Vercel, Cloudflare)
  • Code organization patterns (feature folders, etc.)
  • Testing preferences

These preferences inform your clarifying questions and PRD structure.

Step 1.1: Codebase Discovery

Before asking questions, understand the existing codebase:

1. Detect stack: package.json, requirements.txt, go.mod, etc.
2. Find existing patterns: src/ structure, component patterns, API conventions
3. Check for AGENTS.md for documented patterns
4. Identify test patterns and frameworks
5. Cross-reference with memory: tech-insights for detected stack

Query stack-specific learnings:

# If Next.js detected:
mcp__memory__search_nodes({ query: "nextjs" })

# If Supabase detected:
mcp__memory__search_nodes({ query: "supabase" })

# General mistakes to avoid:
mcp__memory__search_nodes({ query: "mistake" })

Step 1.2: Clarifying Questions

Ask 3-5 essential questions with lettered options:

I'll help you build [feature]. First, a few quick questions:

1. What's the primary goal?
   A. [Goal 1]  B. [Goal 2]  C. [Goal 3]  D. Other

2. Who's the target user?
   A. [User type 1]  B. [User type 2]  C. All users  D. Other

3. What's the scope?
   A. MVP only  B. Full-featured  C. Backend only  D. Frontend only

Reply with: "1A, 2C, 3B" (or type your own answers)

Step 1.3: Generate PRD

Create tasks/prd-[feature-name].md:

# PRD: [Feature Name]

## Overview

Brief description of the feature and its value.

## Goals

- Specific, measurable objective 1
- Specific, measurable objective 2

## Non-Goals

- Explicitly what this feature will NOT do
- Scope boundaries

## User Stories

### US-001: [Title]

**Description:** As a [user type], I want [capability] so that [benefit].

**Acceptance Criteria:**

- [ ] Specific, verifiable criterion
- [ ] Another testable criterion
- [ ] Typecheck passes
- [ ] Tests pass (if applicable)

### US-002: [Title]

...

## Technical Approach

- Key architectural decisions
- Integration points with existing code
- Dependencies between stories

## Success Metrics

How we'll know this feature is working correctly.

Complexity Scoring:

Assign each story a complexity score (1-10) during PRD creation:

Score Description Example
1-3 Simple, single-file change Add a config option, fix a typo
4-6 Moderate, 2-4 files, clear path Add API endpoint, create component
7-8 Complex, multiple concerns Database + API + UI changes
9-10 Very complex, consider splitting Full authentication system

Scoring factors:
- Number of files likely touched
- Number of systems involved (DB, API, UI, etc.)
- Unfamiliarity with the area
- External dependencies or integrations
- Risk of breaking existing functionality

Story Sizing Rules:

Right-sized (1 iteration) Too big (split)
Add a database column Build entire dashboard
Create single API endpoint Add authentication system
Add UI component to existing page Refactor the API
Add filter dropdown Complete feature end-to-end

Rule: If you can't describe the change in 2-3 sentences, split it.

Step 1.4: Generate Complexity Report

After creating the PRD, generate a complexity report to identify potential issues early:

## Complexity Report

**Total stories:** [N]
**Total complexity points:** [sum of all scores]

### Distribution
- Simple (1-3):  [X] stories
- Moderate (4-6): [Y] stories
- Complex (7-10): [Z] stories

### High-Risk Stories (complexity ≥ 7)
| ID | Title | Score | Risk Factors |
|----|-------|-------|--------------|
| US-005 | Add OAuth login | 8 | External API, security, multi-layer |
| US-008 | Database migration | 7 | Data integrity, downtime risk |

### Recommendations
- **US-005:** Consider splitting into: token handling, UI flow, callback endpoint
- **US-008:** Add rollback plan to acceptance criteria

### Estimated Iterations
Based on complexity: [N-M] iterations (assuming ~1 iteration per 3-4 complexity points)

When to flag for splitting:
- Any story with complexity ≥ 8
- More than 3 stories with complexity ≥ 7
- Total complexity points > (story count × 5)

Step 1.5: Get Approval

I've created the PRD at `tasks/prd-[feature-name].md`.

Summary:
- [N] user stories identified
- Total complexity: [X] points ([Low/Medium/High] average)
- High-risk stories: [list any ≥7]
- Key dependencies: [list]

Please review the PRD. Reply with:
- "approved" - Convert to prd.json and begin implementation
- "edit [story]" - Modify a specific story
- "add [story]" - Add a new story
- "expand [story]" - Break a complex story into smaller pieces
- "questions" - Ask me anything about the approach

Phase 2: JSON Conversion

Goal: Convert approved PRD to machine-readable prd.json.

Step 2.1: Archive Previous Run (if needed)

# If prd.json exists with different branch
if [ -f prd.json ]; then
  BRANCH=$(jq -r '.branchName' prd.json)
  if [ "$BRANCH" != "current-branch-name" ]; then
    mkdir -p archive/$(date +%Y-%m-%d)-$BRANCH
    mv prd.json progress.md archive/$(date +%Y-%m-%d)-$BRANCH/
  fi
fi

Step 2.2: Create Feature Branch

git checkout -b feature/[feature-name]

Step 2.2a: Create Feature Worktree (Optional)

If .worktree-scaffold.json exists in the project root, create an isolated worktree for this feature. This keeps development separate from the main working directory.

When to use worktrees:
- Large features with many stories
- Features that need isolation from other work
- Parallel feature development

How to create:

# Check if worktree-scaffold config exists
if [ -f .worktree-scaffold.json ]; then
  # Read config
  WORKTREE_DIR=$(jq -r '.worktreeDir // "../"' .worktree-scaffold.json)
  BRANCH_PREFIX=$(jq -r '.branchPrefix // "feature/"' .worktree-scaffold.json)

  # Feature name without prefix
  FEATURE_NAME="${BRANCH_NAME#${BRANCH_PREFIX}}"
  WORKTREE_PATH="${WORKTREE_DIR}${FEATURE_NAME}"

  # Create worktree
  git worktree add "$WORKTREE_PATH" "$BRANCH_NAME"

  # Run scaffolding if configured
  SCAFFOLD_TYPE=$(jq -r '.defaultScaffold // "default"' .worktree-scaffold.json)
  # Generate scaffold files based on config templates

  echo "Worktree created at: $WORKTREE_PATH"
  echo "Continuing autonomous loop in worktree..."
  cd "$WORKTREE_PATH"
fi

Store worktree info in prd.json:

{
  "worktree": {
    "enabled": true,
    "path": "../feature-name",
    "mainRepoPath": "/original/repo/path"
  }
}

Step 2.3: Generate prd.json

{
  "project": "[Project Name]",
  "branchName": "feature/[feature-name]",
  "description": "[Feature description]",
  "createdAt": "2024-01-15T10:00:00Z",
  "delegation": {
    "enabled": false,
    "fallbackToDirect": true
  },
  "delegationMetrics": {
    "totalStories": 0,
    "delegatedCount": 0,
    "directCount": 0,
    "successRate": 0,
    "avgAttempts": 0,
    "byAgent": {},
    "byType": {},
    "detectionAccuracy": null
  },
  "optimization": {
    "progressSummary": {
      "enabled": true,
      "recentStoriesCount": 3,
      "maxLearnings": 15,
      "autoGenerate": true
    }
  },
  "userStories": [
    {
      "id": "US-001",
      "title": "[Title]",
      "description": "As a [user], I want [feature] so that [benefit]",
      "acceptanceCriteria": [
        "Specific criterion 1",
        "Typecheck passes",
        "Tests pass"
      ],
      "priority": 1,
      "complexity": 4,
      "complexityFactors": ["API endpoint", "database query"],
      "dependsOn": [],
      "status": "pending",
      "passes": false,
      "attempts": 0,
      "notes": "",
      "detectedType": null,
      "delegatedTo": null
    }
  ]
}

Story Fields:

  • complexity: Score 1-10 indicating implementation difficulty
  • complexityFactors: Brief list of what makes it complex (for context)
  • status: One of pending, blocked, in_progress, completed, skipped
  • dependsOn: Array of story IDs that must complete first

Status Values:

Status Meaning
pending Ready to start (no blockers)
blocked Waiting on dependencies
in_progress Currently being implemented
completed Passed all verification
skipped Manually skipped by user

Blocked Detection:

A story is blocked when any story in its dependsOn array has passes: false:

function isBlocked(story, allStories) {
  if (!story.dependsOn || story.dependsOn.length === 0) return false;
  return story.dependsOn.some(depId => {
    const dep = allStories.find(s => s.id === depId);
    return dep && !dep.passes;
  });
}
**Delegation Configuration:**

- `delegation.enabled`: Set to `true` to enable smart delegation to specialized agents
- `delegation.fallbackToDirect`: If `true`, falls back to direct implementation when delegation fails
- `detectedType`: Automatically populated with story type (frontend, api, database, devops, fullstack, general)
- `delegatedTo`: Records which agent implemented the story (e.g., "frontend-agent", "api-agent", or null for direct implementation)

**Delegation Metrics:**

Automatically tracked performance metrics:

- `totalStories`: Total number of stories completed
- `delegatedCount`: Number of stories delegated to agents
- `directCount`: Number of stories implemented directly
- `successRate`: Percentage of stories that passed on first attempt (0-100)
- `avgAttempts`: Average number of attempts per story
- `byAgent`: Breakdown by agent type:
  ```json
  {
    "frontend-agent": { "count": 3, "successRate": 100, "avgAttempts": 1.0 },
    "api-agent": { "count": 2, "successRate": 50, "avgAttempts": 1.5 },
    "direct": { "count": 1, "successRate": 100, "avgAttempts": 1.0 }
  }
  ```
- `byType`: Breakdown by detected story type:
  ```json
  {
    "frontend": 3,
    "api": 2,
    "database": 1,
    "general": 1
  }
  ```
- `detectionAccuracy`: Manual validation results (optional, set by user review)

**Optimization Configuration:**

Token optimization settings for reducing context size:

- `optimization.progressSummary.enabled`: Enable progress.md summarization (default: `true`)
- `optimization.progressSummary.recentStoriesCount`: How many recent stories to include in full detail (default: `3`)
- `optimization.progressSummary.maxLearnings`: Maximum extracted learnings to include (default: `15`)
- `optimization.progressSummary.autoGenerate`: Auto-regenerate summary after each story (default: `true`)

**Disable Progress Summarization:**

To load full progress.md instead of summary:

```json
{
  "optimization": {
    "progressSummary": {
      "enabled": false
    }
  }
}

Updating Metrics:

After each story completion, update delegationMetrics:

function updateDelegationMetrics(prd, story) {
  const metrics = prd.delegationMetrics || {
    totalStories: 0, delegatedCount: 0, directCount: 0,
    successRate: 0, avgAttempts: 0, byAgent: {}, byType: {}
  };

  // Update totals
  metrics.totalStories++;
  if (story.delegatedTo) {
    metrics.delegatedCount++;
  } else {
    metrics.directCount++;
  }

  // Update by-agent breakdown
  const agentKey = story.delegatedTo || 'direct';
  if (!metrics.byAgent[agentKey]) {
    metrics.byAgent[agentKey] = { count: 0, successRate: 0, avgAttempts: 0 };
  }
  metrics.byAgent[agentKey].count++;

  // Update by-type breakdown
  if (story.detectedType) {
    metrics.byType[story.detectedType] = (metrics.byType[story.detectedType] || 0) + 1;
  }

  // Calculate overall success rate (first attempt pass)
  const allStories = prd.userStories.filter(s => s.passes);
  const firstAttemptSuccess = allStories.filter(s => s.attempts === 1).length;
  metrics.successRate = Math.round((firstAttemptSuccess / allStories.length) * 100);

  // Calculate average attempts
  const totalAttempts = allStories.reduce((sum, s) => sum + s.attempts, 0);
  metrics.avgAttempts = (totalAttempts / allStories.length).toFixed(2);

  prd.delegationMetrics = metrics;
}

Querying Metrics with jq:

# Overall delegation rate
jq '.delegationMetrics | "Delegation: \(.delegatedCount)/\(.totalStories) (\((.delegatedCount/.totalStories*100)|round)%)"' prd.json

# Agent performance
jq '.delegationMetrics.byAgent | to_entries | .[] | "\(.key): \(.value.count) stories, \(.value.successRate)% success"' prd.json

# Most common story types
jq '.delegationMetrics.byType | to_entries | sort_by(-.value) | .[] | "\(.key): \(.value)"' prd.json

# Success rate trend
jq '.delegationMetrics | "Success rate: \(.successRate)% | Avg attempts: \(.avgAttempts)"' prd.json

Step 2.4: Initialize Progress File

Create progress.md:

# Progress Log: [Feature Name]

Branch: `feature/[feature-name]`
Started: [Date]

---

Step 2.5: Detect Verification Commands

Scan the codebase to find the right commands:

# Check for common patterns
grep -l "typecheck\|tsc\|type-check" package.json 2>/dev/null
grep -l "test\|jest\|vitest\|pytest" package.json pyproject.toml 2>/dev/null
grep -l "lint\|eslint" package.json 2>/dev/null

Store in prd.json:

{
  "verification": {
    "typecheck": "npm run typecheck",
    "test": "npm run test",
    "lint": "npm run lint",
    "build": "npm run build"
  }
}

Phase 3: Autonomous Loop

Goal: Implement one story per iteration until complete.

Step 3.0: Load Context (with Token Optimization)

At the start of EVERY iteration, load context efficiently:

# Read current state
cat prd.json
cat AGENTS.md 2>/dev/null

# Use optimized progress loading (see below)

Optimized Progress Loading:

To reduce token usage, prefer progress-summary.md over full progress.md:

function loadProgressContext(prd) {
  const optimization = prd.optimization?.progressSummary ?? { enabled: true };

  // 1. Check if summary exists and optimization is enabled
  if (optimization.enabled && fileExists('progress-summary.md')) {
    const summaryMtime = getModifiedTime('progress-summary.md');
    const progressMtime = getModifiedTime('progress.md');

    // Use summary if it's fresh (newer than progress.md)
    if (summaryMtime >= progressMtime) {
      return readFile('progress-summary.md');  // ~400-800 tokens
    }
  }

  // 2. Fallback: Extract recent entries from progress.md
  const recentCount = optimization.recentStoriesCount || 3;
  return extractRecentEntries(readFile('progress.md'), recentCount);
}

Token Savings:

Stories Full progress.md progress-summary.md Savings
5 ~1,500 tokens ~500 tokens 67%
10 ~3,000 tokens ~700 tokens 77%
20 ~6,000 tokens ~900 tokens 85%

The summary grows logarithmically (learnings deduplicate) while full log grows linearly.

Load cross-codebase learnings:

# Query memory for relevant insights based on detected tech stack
mcp__memory__search_nodes({ query: "[detected-framework]" })  # e.g., "nextjs", "fastapi"
mcp__memory__search_nodes({ query: "mistake" })               # Avoid past mistakes
mcp__memory__search_nodes({ query: "pattern" })               # Apply known patterns

Stack detection -> memory queries:

Detected Stack Memory Queries
Next.js nextjs, react, server-components
Supabase supabase, rls, postgres
FastAPI fastapi, python, api
React react, hooks, state-management

Find the next story using proper dependency and blocking logic:

function getNextStory(prd) {
  const stories = prd.userStories;

  // Update blocked status for all stories
  stories.forEach(story => {
    if (story.passes || story.status === 'skipped') return;

    const blocked = story.dependsOn?.some(depId => {
      const dep = stories.find(s => s.id === depId);
      return dep && !dep.passes;
    });

    story.status = blocked ? 'blocked' : 'pending';
  });

  // Find first non-blocked, non-completed story by priority
  return stories
    .filter(s => !s.passes && s.status !== 'blocked' && s.status !== 'skipped')
    .sort((a, b) => a.priority - b.priority)[0] || null;
}

const nextStory = getNextStory(prd);

if (!nextStory) {
  const blocked = prd.userStories.filter(s => s.status === 'blocked');
  if (blocked.length > 0) {
    console.log(`⚠ ${blocked.length} stories are blocked:`);
    blocked.forEach(s => {
      const deps = s.dependsOn.filter(id =>
        !prd.userStories.find(x => x.id === id)?.passes
      );
      console.log(`  - ${s.id}: waiting on ${deps.join(', ')}`);
    });
  }
}

Blocked story output:

⚠ 2 stories are blocked:
  - US-004: waiting on US-002, US-003
  - US-006: waiting on US-005

Next available: US-002 (priority 2, complexity 5)

Step 3.0a: Analyze Story Type (Smart Delegation)

Before implementing, detect the story type to enable smart delegation.

Story Type Detection:

Analyze the story to determine its primary type:

function detectStoryType(story) {
  const fullText = [
    story.title,
    story.description,
    ...story.acceptanceCriteria,
    story.notes || ''
  ].join(' ').toLowerCase();

  const signals = {
    frontend: 0,
    backend: 0,
    api: 0,
    database: 0,
    devops: 0,
    fullstack: 0
  };

  // Frontend patterns
  const frontendPatterns = [
    /\b(component|ui|page|form|button|modal|dropdown|layout|widget)\b/,
    /\b(react|vue|angular|svelte|next\.js|nuxt)\b/,
    /\b(css|style|theme|responsive|mobile|desktop)\b/,
    /\b(click|hover|animation|transition|render)\b/,
    /\/(components|pages|app|views|layouts)\//,
    /\.(tsx|jsx|vue|svelte)$/
  ];

  // API patterns
  const apiPatterns = [
    /\b(endpoint|route|api|rest|graphql)\b/,
    /\b(get|post|put|delete|patch)\s+(request|endpoint)/,
    /\b(middleware|authentication|authorization)\b/,
    /\b(controller|service|handler)\b/,
    /\/(api|routes|controllers|services)\//,
    /\b(express|fastapi|flask|django|nestjs)\b/
  ];

  // Database patterns
  const databasePatterns = [
    /\b(database|schema|migration|table|column|index)\b/,
    /\b(query|sql|postgres|mysql|mongodb|supabase)\b/,
    /\b(orm|prisma|drizzle|sequelize|mongoose)\b/,
    /\b(rls|row level security|foreign key|constraint)\b/,
    /\/(migrations|schema|models|entities)\//,
    /\b(create table|alter table|add column)\b/
  ];

  // DevOps patterns
  const devopsPatterns = [
    /\b(deploy|deployment|ci\/cd|docker|kubernetes|container)\b/,
    /\b(github actions|gitlab ci|jenkins|vercel|railway)\b/,
    /\b(environment variable|config|secrets|env)\b/,
    /\b(build|bundle|webpack|vite|rollup)\b/,
    /\.(dockerfile|yaml|yml|\.github\/workflows)$/,
    /\b(nginx|apache|load balancer|cdn)\b/
  ];

  // Fullstack patterns (touches multiple layers)
  const fullstackPatterns = [
    /\b(end.to.end|e2e|full.stack|complete feature)\b/,
    /\b(authentication system|oauth flow|signup flow)\b/,
    /\b(frontend.*backend|backend.*frontend)\b/,
    /\b(database.*ui|ui.*database)\b/
  ];

  // Score each category
  frontendPatterns.forEach(p => { if (p.test(fullText)) signals.frontend++; });
  apiPatterns.forEach(p => { if (p.test(fullText)) signals.api++; });
  databasePatterns.forEach(p => { if (p.test(fullText)) signals.database++; });
  devopsPatterns.forEach(p => { if (p.test(fullText)) signals.devops++; });
  fullstackPatterns.forEach(p => { if (p.test(fullText)) signals.fullstack++; });

  // API is subset of backend
  if (signals.api > 0) signals.backend = signals.api;

  // Determine primary type
  const maxScore = Math.max(...Object.values(signals));

  if (signals.fullstack >= 2) return 'fullstack';
  if (maxScore === 0) return 'general'; // No clear signals

  // Return highest scoring type (priority order if tied)
  const priority = ['database', 'api', 'backend', 'frontend', 'devops'];
  for (const type of priority) {
    if (signals[type] === maxScore) {
      return type;
    }
  }

  return 'general';
}

Detection Implementation:

When Step 3.0a runs during autonomous loop execution:

  1. Run Detection:
    javascript const detectedType = detectStoryType(currentStory);

  2. Log to Console:
    Story type detected: api Detection signals: { api: 3, backend: 3, frontend: 0, database: 0, devops: 0 }

  3. Store in prd.json:
    javascript currentStory.detectedType = detectedType; savePRD(prd);

  4. Update progress.md:
    ```markdown
    ## Story Analysis

  5. Detected type: api

  6. Confidence signals: { api: 3, backend: 3, frontend: 0 }
    ```

Important: Detection runs automatically but does NOT trigger delegation unless delegation.enabled = true in prd.json. This allows testing detection accuracy before enabling delegation.

Example Output:

## Starting: US-003 - Add user profile API endpoint

Story type detected: api
Detection signals: { api: 3, backend: 3, frontend: 0, database: 0, devops: 0 }

**Goal:** Create GET /api/users/:id endpoint

**Acceptance Criteria:**
- [ ] Returns user object with id, name, email
- [ ] Returns 404 if not found
- [ ] Returns 401 if not authenticated
- [ ] Typecheck passes
- [ ] Tests pass

**Approach:** Create new API route handler in app/api/users/[id]/route.ts...

Step 3.1: Announce Task

## Starting: US-[XXX] - [Title]

**Goal:** [One-line description]

**Acceptance Criteria:**
- [ ] Criterion 1
- [ ] Criterion 2
- [ ] Typecheck passes

**Approach:** [2-3 sentences on how you'll implement this]

Step 3.2: Implement Code (with Smart Delegation)

Check Delegation Status:

const delegationEnabled = prd.delegation?.enabled === true;
const fallbackToDirect = prd.delegation?.fallbackToDirect !== false;

Option A: Delegation Enabled

If delegationEnabled === true:

  1. Select Specialized Agent:

```javascript
// Agent type mapping: story type → specialized agent skill
const AGENT_MAP = {
'frontend': 'frontend-agent', // UI/component work
'backend': 'backend-agent', // Server-side logic (alias for api)
'api': 'api-agent', // REST/GraphQL endpoints
'database': 'database-agent', // Schema, migrations, queries
'devops': 'devops-agent', // CI/CD, deployment, infrastructure
'fullstack': 'orchestrator-fullstack', // Multi-layer features
'general': 'general-purpose' // Catch-all for unclear stories
};

const storyType = detectStoryType(story); // From Step 3.0a
const agentType = AGENT_MAP[storyType] || 'general-purpose';

// Note: Agent availability is checked when Task tool is invoked
// If agent skill is not installed, Task will fail and trigger fallback
```

Log agent selection:
```
Detected story type: ${storyType}
Selected agent: ${agentType}

Delegating to ${agentType}...
```

  1. Generate Subagent Context:

Create a detailed prompt for the subagent:

```markdown
# Story Implementation Task

You are implementing a single user story for the autonomous-dev orchestrator.

## Scope Constraints
ONLY implement this specific story. Do not:
- Implement other stories from the PRD
- Refactor unrelated code
- Add features beyond acceptance criteria
- Create unnecessary abstractions
- Create documentation unless explicitly required by acceptance criteria

## Story Details
ID: ${story.id}
Title: ${story.title}
Priority: ${story.priority}

Description:
${story.description}

Acceptance Criteria:
${story.acceptanceCriteria.map(c => - [ ] ${c}).join('\n')}

## Project Context
Tech Stack: ${detectStack()}
Branch: ${prd.branchName}
Working Directory: ${process.cwd()}

Verification Commands:
${Object.entries(prd.verification || {})
.map(([type, cmd]) => - ${type}: \${cmd}``)
.join('\n')}

## Repository Patterns
${readFile('AGENTS.md') || 'No documented patterns yet'}

## Recent Implementation Context
${extractRecentProgress(3)} // Last 3 entries from progress.md

## Memory Insights
Patterns to apply:
${queryMemoryPatterns(detectStack())}

Mistakes to avoid:
${queryMemoryMistakes()}

## Dependencies from Previous Stories
${story.dependsOn.map(id => - ${id}: ${getPreviousStoryNotes(id)}).join('\n')}

## Your Task
1. Read relevant existing code
2. Implement ONLY what's needed for this story
3. Run verification commands
4. Report structured results

## Required Output Format
```
RESULT: [SUCCESS|FAILURE]

Files changed:
- path/to/file1.ts (new/modified)
- path/to/file2.ts (modified)

Verification:
- Typecheck: [PASS|FAIL]
- Tests: [PASS|FAIL - X/Y passed]
- Lint: [PASS|FAIL]

Implementation notes:
[2-3 sentences describing key decisions]

Learnings:
[Patterns discovered or issues encountered]

  1. Invoke Subagent:

javascript const result = await Task({ subagent_type: agentType, description: `Implement ${story.id}: ${story.title}`, prompt: subagentPrompt });

  1. Parse Subagent Result:

```javascript
function parseSubagentResult(output) {
// Extract RESULT line
const resultMatch = output.match(/RESULT:\s*(SUCCESS|FAILURE)/i);

 // Extract files changed
 const filesMatch = output.match(/Files changed:\n((?:- .+\n?)+)/);
 const filesChanged = filesMatch?.[1]
   ?.split('\n')
   .filter(l => l.trim())
   .map(l => l.replace(/^- /, '').trim()) || [];

 // Extract verification results
 const verificationMatch = output.match(/Verification:\n((?:- .+\n?)+)/);
 const verification = {};
 if (verificationMatch) {
   verificationMatch[1].split('\n').forEach(line => {
     const match = line.match(/- (\w+): (PASS|FAIL)/i);
     if (match) verification[match[1].toLowerCase()] = match[2].toUpperCase();
   });
 }

 // Extract notes
 const notesMatch = output.match(/Implementation notes:\n(.+?)(?=\n\n|Learnings:|$)/s);
 const notes = notesMatch?.[1]?.trim() || '';

 const learningsMatch = output.match(/Learnings:\n(.+?)$/s);
 const learnings = learningsMatch?.[1]?.trim() || '';

 return {
   success: resultMatch?.[1]?.toUpperCase() === 'SUCCESS',
   filesChanged,
   verification,
   notes,
   learnings
 };

}

const parsed = parseSubagentResult(result);
```

Validate Parsed Result:

```javascript
function validateSubagentResult(parsed, story) {
const errors = [];

 // 1. Check required fields present
 if (parsed.success === undefined) {
   errors.push('Missing RESULT status');
 }

 if (!parsed.filesChanged || parsed.filesChanged.length === 0) {
   errors.push('No files changed reported');
 }

 if (!parsed.verification || Object.keys(parsed.verification).length === 0) {
   errors.push('No verification results reported');
 }

 // 2. Validate verification results format
 for (const [key, value] of Object.entries(parsed.verification)) {
   if (value !== 'PASS' && value !== 'FAIL') {
     errors.push(`Invalid verification status for ${key}: ${value}`);
   }
 }

 // 3. Check files changed are reasonable
 const suspiciousFiles = parsed.filesChanged.filter(file =>
   file.includes('node_modules/') ||
   file.includes('.git/') ||
   file.includes('package-lock.json') ||
   file.match(/\.(env|secret|key)$/)
 );

 if (suspiciousFiles.length > 0) {
   errors.push(`Suspicious files modified: ${suspiciousFiles.join(', ')}`);
 }

 // 4. Validate file paths exist or are new
 for (const file of parsed.filesChanged) {
   const isNew = file.includes('(new)');
   const filePath = file.replace(/\s*\(new\|modified\)/, '').trim();
   // Note: File existence check would happen here
   // if (!isNew && !fileExists(filePath)) {
   //   errors.push(`File not found: ${filePath}`);
   // }
 }

 return {
   valid: errors.length === 0,
   errors
 };

}

function allVerificationsPassed(verification) {
return Object.values(verification).every(status => status === 'PASS');
}

// Validate result
const validation = validateSubagentResult(parsed, story);

if (!validation.valid) {
console.error('⚠ Subagent result validation failed:');
validation.errors.forEach(err => console.error(- ${err}));
// Treat as delegation failure
parsed.success = false;
}
```

Error Handling for Malformed Output:

```javascript
try {
const parsed = parseSubagentResult(result);
const validation = validateSubagentResult(parsed, story);

 if (!validation.valid) {
   throw new Error(`Validation failed: ${validation.errors.join('; ')}`);
 }

} catch (error) {
console.error(✗ Failed to parse subagent output: ${error.message});

 // Log raw output for debugging
 console.log('Raw subagent output:');
 console.log(result.substring(0, 500)); // First 500 chars

 // Trigger fallback
 if (fallbackToDirect) {
   console.log('⚠ Falling back to direct implementation...');
   // Proceed to Option B
 } else {
   throw error;
 }

}
```

  1. Handle Delegation Result:

If delegation succeeds:
```javascript
if (parsed.success && allVerificationsPassed(parsed.verification)) {
// Update story in prd.json
story.passes = true;
story.delegatedTo = agentType;
story.completedAt = new Date().toISOString();

 // Log success
 console.log(`✓ ${story.id} completed via ${agentType}`);

 // Continue to Step 3.3 (verification)

}
```

If delegation fails and fallbackToDirect === true:

Common failure reasons:
- Agent skill not installed/available
- Agent returned FAILURE result
- Verification commands failed
- Task tool error

```
⚠ Delegation to ${agentType} failed.
Reason: ${getFailureReason(result)}

Falling back to direct implementation...
```
→ Proceed to Option B (Direct Implementation)

Note: The fallback mechanism provides automatic recovery when:
- Selected agent is not installed (general-purpose always available as ultimate fallback)
- Agent fails to implement the story correctly
- Verification fails after delegation

If delegation fails and fallbackToDirect === false:
```
✗ Delegation failed and fallback is disabled.

Options:
1. Enable fallback: Set delegation.fallbackToDirect = true
2. Try different agent (manual override)
3. Skip this story
4. Pause autonomous mode

What would you like to do?
```

Fallback Tracking:

When fallback occurs, story metadata reflects direct implementation:
json { "id": "US-007", "delegatedTo": null, "notes": "Delegation to api-agent failed: agent not available. Fell back to direct implementation." }

Error Scenario Examples:

Scenario 1: Agent Not Available
```
## Starting: US-002 - Add user profile endpoint

Story type detected: api
Selected agent: api-agent

Delegating to api-agent...
✗ Error: Skill 'api-agent' not found
⚠ Delegation to api-agent failed.
Reason: Agent skill not installed

Falling back to direct implementation...
```

Scenario 2: Agent Returns FAILURE
```
## Starting: US-003 - Add email column to users table

Delegating to database-agent...

RESULT: FAILURE

Verification:
- Migration up: FAIL - Syntax error on line 12

⚠ Delegation to database-agent failed.
Reason: Agent returned FAILURE result

Falling back to direct implementation...
```

Scenario 3: Verification Fails
```
## Starting: US-001 - Add dark mode toggle

Delegating to frontend-agent...

RESULT: SUCCESS

Verification:
- Typecheck: FAIL - Type error in ThemeToggle.tsx

⚠ Delegation to frontend-agent failed.
Reason: Verification commands failed (typecheck: FAIL)

Falling back to direct implementation...
```

Scenario 4: Malformed Output
```
## Starting: US-005 - Set up CI/CD

Delegating to devops-agent...

[Agent output doesn't match expected format]

✗ Failed to parse subagent output: Missing RESULT status
Raw subagent output:
[First 500 characters shown...]

⚠ Falling back to direct implementation...
```

Option B: Direct Implementation (Default)

If delegationEnabled === false OR delegation failed with fallback:

  1. Read relevant existing files first
  2. Follow patterns from AGENTS.md and existing code
  3. Write code for ONLY this user story
  4. Keep changes minimal and focused

Implementation Checklist:

  • [ ] Read existing code patterns first
  • [ ] Make minimal necessary changes
  • [ ] Add tests if acceptance criteria requires them
  • [ ] Don't refactor unrelated code

Step 3.3: Run Verification

Execute verification commands from prd.json:

# Run typecheck
npm run typecheck

# Run tests (if applicable to this story)
npm run test

# Run lint (optional but recommended)
npm run lint

Step 3.4: Handle Results

If verification passes:

  1. Update prd.json:

json { "passes": true, "attempts": 1, "completedAt": "2024-01-15T11:30:00Z" }

  1. Commit the work:

```bash
git add -A
git commit -m "feat(US-XXX): [Title]

  • [What was implemented]
  • [Key decisions made]"
    ```

  • Update progress.md:

```markdown
## [Timestamp] - US-XXX: [Title]

Implementation:

  • [What was done]
  • [Files changed]

Learnings:

  • [Patterns discovered]
  • [Gotchas encountered]

```

  1. Generate progress-summary.md (Token Optimization):

After updating progress.md, regenerate the compact summary:

```javascript
function generateProgressSummary(prd, progressMd) {
const optimization = prd.optimization?.progressSummary ?? { enabled: true };
if (!optimization.enabled) return;

 const recentCount = optimization.recentStoriesCount || 3;
 const maxLearnings = optimization.maxLearnings || 15;

 const summary = `# Progress Summary: ${prd.project}

Branch: `${prd.branchName}`
Started: ${prd.createdAt?.split('T')[0] || 'Unknown'}
Last updated: ${new Date().toISOString().split('T')[0]}

Completion Status

${generateCompletionStatus(prd)}

Story Status

${generateStoryTable(prd)}

Key Learnings (Extracted)

${extractKeyLearnings(progressMd, maxLearnings)}

Recent Context (Last ${recentCount} Stories)

${extractRecentEntries(progressMd, recentCount)}


Auto-generated from progress.md. Full history preserved in progress.md.
`;

 writeFile('progress-summary.md', summary);

}
```

Helper Functions:

```javascript
function generateCompletionStatus(prd) {
const total = prd.userStories.length;
const complete = prd.userStories.filter(s => s.passes).length;
const inProgress = prd.userStories.find(s => !s.passes && s.attempts > 0);
const pct = Math.round((complete / total) * 100);

 return `Stories: ${complete}/${total} complete (${pct}%)

Current: ${inProgress ? ${inProgress.id} (attempt ${inProgress.attempts}) : 'None'}
Blocked: None`;
}

function generateStoryTable(prd) {
const header = '| ID | Title | C | Status | Attempts |\n|----|-------|---|--------|----------|';
const rows = prd.userStories.map(s => {
const statusIcon = s.passes ? '✓' :
s.status === 'blocked' ? '⊘' :
s.status === 'expanded' ? '↳' :
s.attempts > 0 ? '→' : '○';
const complexity = s.complexity || '-';
const title = s.title.length > 25 ? s.title.slice(0, 22) + '...' : s.title;
return | ${s.id} | ${title} | ${complexity} | ${statusIcon} | ${s.attempts} |;
});
return [header, ...rows].join('\n') + '\n\nLegend: ✓ done, → active, ○ pending, ⊘ blocked, ↳ expanded\nC = Complexity (1-10)';
}

function extractKeyLearnings(progressMd, maxLearnings) {
const learnings = { patterns: [], gotchas: [], dependencies: [] };

 // Extract from **Learnings:** sections
 const learningBlocks = progressMd.match(/\*\*Learnings:\*\*\n((?:- .+\n?)+)/g) || [];
 learningBlocks.forEach(block => {
   const lines = block.match(/- .+/g) || [];
   lines.forEach(line => {
     const text = line.replace(/^- /, '').trim();
     if (/gotcha|warning|careful|must|don't|avoid/i.test(text)) {
       learnings.gotchas.push(text);
     } else {
       learnings.patterns.push(text);
     }
   });
 });

 // Deduplicate and limit
 const uniquePatterns = [...new Set(learnings.patterns)].slice(0, maxLearnings);
 const uniqueGotchas = [...new Set(learnings.gotchas)].slice(0, 5);

 let output = '### Repository Patterns\n';
 output += uniquePatterns.map(p => `- ${p}`).join('\n') || '- No patterns extracted yet';
 output += '\n\n### Gotchas & Warnings\n';
 output += uniqueGotchas.map(g => `- ${g}`).join('\n') || '- No gotchas recorded';

 return output;

}

function extractRecentEntries(progressMd, count) {
// Split by story headers (## YYYY-MM-DD or ## timestamp)
const entries = progressMd.split(/(?=^## \d{4}-\d{2}-\d{2}|\n---\n\n## )/m);

 // Take last N entries (skip header)
 const recent = entries.filter(e => e.match(/^## \d/)).slice(-count);

 if (recent.length === 0) return 'No completed stories yet.';

 // Compress each entry (keep first 10 lines max)
 return recent.map(entry => {
   const lines = entry.trim().split('\n');
   if (lines.length <= 12) return entry.trim();
   return lines.slice(0, 12).join('\n') + '\n[...]';
 }).join('\n\n');

}
```

When to Generate:
- After each story completion (Step 3.4)
- When status summarize command is run
- Automatically on next iteration if progress.md is newer

  1. Extract and save learnings to Memory:

After each successful story, evaluate if any learnings are broadly applicable:

```
# Ask yourself:
# 1. Did I discover a pattern that would help in other projects?
# 2. Did I make a mistake that should be avoided elsewhere?
# 3. Did I learn something about a framework/tool?

# If yes, save to memory:
mcp__memory__create_entities({
entities: [{
name: "pattern:descriptive-name",
entityType: "pattern",
observations: [
"What the pattern is",
"When to apply it",
"Applies to: [frameworks/languages]"
]
}]
})
```

Learning extraction criteria:

Save as When
pattern Solution worked well and is reusable
mistake Made an error, had to fix it
tech-insight Learned something about a specific tool
architecture-decision Made a structural choice that proved good

Skip saving if:
- Learning is project-specific (put in AGENTS.md instead)
- Already exists in memory (check first)
- Too trivial to be useful

  1. Check completion and continue:

```
US-XXX complete. [N] stories remaining.

Continuing to next story...
```

If verification fails:

  1. Increment attempts: "attempts": N+1

  2. Analyze failure:

```
Verification failed for US-XXX (attempt N).

Error: [error message]

Analysis: [what went wrong]

Fix: [what I'll change]
```

  1. If attempts < 3: Fix and retry step 3.3

  2. After fixing a failure, save the mistake to memory:

mcp__memory__create_entities({ entities: [{ name: "mistake:descriptive-name", entityType: "mistake", observations: [ "What went wrong: [description]", "How to avoid: [prevention strategy]", "Applies to: [frameworks/languages]", "Severity: [low/medium/high/critical]" ] }] })

  1. If attempts >= 2 and complexity >= 6, suggest expansion:

```
US-XXX failed on attempt 2 (complexity: 7).

This story may be too complex for a single iteration.

Suggested: Run expand US-XXX to break it into smaller pieces.

Options:
1. expand - Break into 2-4 smaller stories (recommended)
2. retry - Try one more time
3. skip - Move to next story
4. pause - Stop and get help
```

  1. If attempts >= 3:

```
US-XXX failed after 3 attempts.

Last error: [message]
Complexity: [N] | Factors: [list]

Options:
1. expand - Break into smaller stories (recommended for complexity ≥ 6)
2. help - Get user assistance with blockers
3. skip - Continue with next story
4. pause - Stop autonomous mode

What would you like to do?
```

Step 3.5: Completion Check

After each story:

const remaining = stories.filter((s) => !s.passes);
if (remaining.length === 0) {
  // All done!
  output("COMPLETE");
} else {
  // Continue to next story
  continueLoop();
}

When all stories complete:

===== FEATURE COMPLETE =====

Branch: feature/[name]
Stories completed: [N]
Total commits: [M]

Summary:
- [Key accomplishments]
- [Files changed]

Next steps:
1. Review the changes: git log --oneline feature/[name]
2. Run full test suite: npm test
3. Create PR when ready: gh pr create

Would you like me to:
A. Create a pull request
B. Show a detailed summary
C. Continue with more features
D. Clean up worktree (if used)

Step 3.6: Worktree Cleanup (If Used)

If the feature was developed in a worktree, offer cleanup:

# Check if worktree was used
if [ -n "$(jq -r '.worktree.path // empty' prd.json)" ]; then
  WORKTREE_PATH=$(jq -r '.worktree.path' prd.json)
  MAIN_REPO=$(jq -r '.worktree.mainRepoPath' prd.json)

  echo "Feature developed in worktree: $WORKTREE_PATH"
  echo ""
  echo "Cleanup options:"
  echo "1. Keep worktree (for future reference)"
  echo "2. Remove worktree, keep branch"
  echo "3. Remove worktree and merge branch to main"
fi

To remove worktree:

# From main repo
cd "$MAIN_REPO"
git worktree remove "$WORKTREE_PATH"
git worktree prune

Error Recovery

Story Breaks Previous Functionality

Detected: Tests that passed before are now failing.

Affected tests: [list]

Options:
1. Rollback this story: git reset --hard HEAD~1
2. Fix the regression before continuing
3. Mark as known issue and continue

Context Overflow Prevention

If a story is taking too many tokens:

  1. Commit partial progress
  2. Log current state to progress.md
  3. Suggest splitting the story

Stuck on Dependencies

If a story needs something not yet implemented:

  1. Check if dependency story exists
  2. If not, suggest adding it as US-00X
  3. Reorder priorities if needed

Key Files Reference

File Purpose Created
tasks/prd-*.md Human-readable PRD Phase 1
prd.json Machine-readable task list Phase 2
progress.md Append-only learnings (full) Phase 2+
progress-summary.md Compact context (auto-generated) Phase 3 (auto)
AGENTS.md Long-term repo patterns Anytime
archive/ Previous completed PRDs Before new feature
.worktree-scaffold.json Worktree config (optional) User creates

Worktree Integration

The autonomous-agent integrates with the worktree-scaffold skill for parallel development.

Setup worktree support:

  1. Create .worktree-scaffold.json in project root (run /worktree-scaffoldinit worktree config)
  2. The agent will detect this file in Phase 2 and offer worktree creation
  3. Each feature gets its own isolated workspace

Benefits:
- Isolate feature development from main repo
- Work on multiple features in parallel
- Keep main directory clean during development

See also: /worktree-scaffold skill for standalone worktree management.


AGENTS.md Patterns to Document

When you discover patterns, add them to AGENTS.md:

# Repository Patterns

## API Conventions

- All endpoints use REST conventions
- Error responses follow format: { error: string, code: number }

## Component Patterns

- UI components in src/components/
- Server actions in src/actions/

## Database

- Migrations in db/migrations/
- Schema in db/schema.ts

## Testing

- Unit tests alongside source files
- Integration tests in tests/

## Gotchas

- Must run db:generate after schema changes
- Server actions need revalidatePath for cache

Quick Commands

Command What it does
"status" Show current progress and next story
"skip" Skip current story, move to next
"pause" Stop autonomous mode, wait for input
"split [story]" Break a story into smaller pieces (manual)
"expand [story]" Smart-expand a complex story into 2-4 substories
"retry" Retry the current story
"complete" Force-mark current story as done
"summarize" Regenerate progress-summary.md from full log

Status Command

The status command shows progress with complexity and blocking information:

> status

## Progress: User Settings Feature

Branch: feature/user-settings
Stories: 4/8 complete (50%)

| ID      | Title                    | C | Status | Attempts |
|---------|--------------------------|---|--------|----------|
| US-001  | Create settings page     | 3 | ✓      | 1        |
| US-002  | Add profile form         | 4 | ✓      | 1        |
| US-003  | Add avatar upload        | 5 | ✓      | 2        |
| US-004  | Connect to API           | 4 | ✓      | 1        |
| US-005  | Add email preferences    | 3 | →      | 1        |
| US-006  | Add notification settings| 6 | ○      | 0        |
| US-007  | Add OAuth connections    | 8 | ⊘      | 0        |
| US-008  | Add delete account       | 5 | ○      | 0        |

Legend: ✓ done, → active, ○ pending, ⊘ blocked
C = Complexity (1-10)

**Blocked stories:**
- US-007: waiting on US-005, US-006

**Complexity summary:**
- Remaining: 22 points across 4 stories
- Avg complexity: 5.5
- High-risk: US-007 (8) - consider `expand US-007`

**Next:** US-005 - Add email preferences (complexity: 3)

Expand Command

The expand command intelligently breaks a complex story into smaller, implementable pieces:

> expand US-005

Analyzing US-005: "Add OAuth login flow" (complexity: 8)

Complexity factors:
- External API integration (Google OAuth)
- Multiple routes (callback, logout)
- Session management
- UI components (login button, user menu)

Expanding into 4 stories...

## Proposed Expansion

**US-005.1: Add OAuth callback endpoint** (complexity: 3)
- Create /api/auth/callback route
- Handle token exchange
- Store session in cookie
- Acceptance: Returns user data on success, 401 on failure

**US-005.2: Add OAuth initiation endpoint** (complexity: 2)
- Create /api/auth/login route
- Redirect to Google OAuth URL
- Include proper scopes and state
- Acceptance: Redirects to Google, state validated on return

**US-005.3: Add login button component** (complexity: 3)
- Create LoginButton component
- Handle loading/error states
- Redirect to OAuth initiation
- Acceptance: Button visible when logged out, triggers OAuth flow

**US-005.4: Add user session context** (complexity: 4)
- Create AuthContext provider
- Add useAuth hook
- Fetch session on app load
- Acceptance: Components can access user state, logout works

**Dependencies:** US-005.1 → US-005.2 → US-005.3, US-005.4

Original complexity: 8 → Expanded total: 12 (but each piece is manageable)

Apply this expansion? (yes/no/edit)

When expansion is triggered:
- User runs expand [story-id]
- Story fails 2+ times (suggested automatically)
- Complexity ≥ 8 detected during Phase 3

Expansion rules:
- Create 2-4 new stories (never more)
- Each new story should be complexity ≤ 5
- Preserve the original story's intent
- Set up proper dependsOn relationships
- New IDs use parent.1, parent.2 format

After expansion:

// Original story marked as expanded
{
  "id": "US-005",
  "status": "expanded",
  "expandedInto": ["US-005.1", "US-005.2", "US-005.3", "US-005.4"]
}

// New stories added to prd.json
{
  "id": "US-005.1",
  "title": "Add OAuth callback endpoint",
  "complexity": 3,
  "dependsOn": [],
  "expandedFrom": "US-005"
}

Summarize Command

The summarize command regenerates progress-summary.md from the full progress.md:

> summarize

Regenerating progress-summary.md...

Summary generated:
- Stories: 12/14 complete (86%)
- Learnings extracted: 15 patterns, 4 gotchas
- Recent context: Last 3 stories included
- Token savings: ~3,200 tokens (78% reduction)

Summary written to progress-summary.md

Use this command to:
- Force regenerate after manual edits to progress.md
- View token savings statistics
- Verify extracted learnings are correct


Enabling Delegation (Beta)

⚠️ BETA FEATURE: Smart delegation is currently in beta. Automatic fallback to direct implementation ensures reliable operation.

How to Enable

  1. Update prd.json:
    json { "delegation": { "enabled": true, "fallbackToDirect": true } }

  2. Install specialized agents (optional but recommended):
    ```bash
    # Frontend agent for UI/component work
    git clone https://github.com/org/frontend-agent ~/.claude/skills/frontend-agent

# API agent for endpoint implementation
git clone https://github.com/org/api-agent ~/.claude/skills/api-agent

# Database agent for schema/migrations
git clone https://github.com/org/database-agent ~/.claude/skills/database-agent

# DevOps agent for CI/CD and deployment
git clone https://github.com/org/devops-agent ~/.claude/skills/devops-agent
```

Note: If agents aren't installed, delegation falls back to direct implementation automatically.

  1. Run autonomous-dev as normal:
  2. Story type detection runs automatically (Step 3.0a)
  3. Delegation attempts if enabled and agent available (Step 3.2)
  4. Falls back to direct implementation on any failure
  5. Tracks metrics in prd.json (delegationMetrics)

What to Expect

With delegation enabled:
- Each story is analyzed to detect type (frontend, api, database, etc.)
- Appropriate specialized agent is selected
- Agent implements the story with domain-specific expertise
- Fallback to direct implementation if agent unavailable or fails
- Metrics tracked for performance analysis

Logging output:

## Starting: US-003 - Add dark mode toggle

Story type detected: frontend
Selected agent: frontend-agent

Delegating to frontend-agent...

✓ Created app/components/ThemeToggle.tsx
✓ Typecheck passed
✓ Tests passed (2/2)

RESULT: SUCCESS

✓ US-003 complete (attempt 1)
  Implemented by: frontend-agent

How to Disable

Set delegation.enabled to false in prd.json:

{
  "delegation": {
    "enabled": false
  }
}

The autonomous loop continues with direct implementation.

Beta Testing Checklist

  • [ ] Enable delegation in a test PRD (non-production project)
  • [ ] Run autonomous loop on 5-10 stories
  • [ ] Review delegationMetrics in prd.json
  • [ ] Check which agents performed well vs. needed fallback
  • [ ] Review progress.md for delegation logs
  • [ ] Verify fallback mechanism works (try without agents installed)
  • [ ] Analyze metrics with jq queries (see examples.md)
  • [ ] Report any issues or unexpected behavior

Troubleshooting

Issue: "Agent not found" error
- Cause: Specialized agent skill not installed
- Solution: Either install the agent or rely on automatic fallback
- Expected: Delegation falls back to direct implementation automatically

Issue: Delegation fails repeatedly for specific story type
- Cause: Agent may not handle this pattern well
- Solution: Review progress.md logs, consider disabling delegation for that agent type
- Temporary fix: Implement story directly, file issue with agent maintainer

Issue: Detection classifies story incorrectly
- Cause: Story description lacks clear technical keywords
- Solution: Add specific keywords (e.g., "component", "endpoint", "migration")
- Alternative: Set detectedType manually in prd.json before running

Issue: Metrics not updating
- Cause: delegationMetrics object missing from prd.json
- Solution: Add empty metrics object (see schema in Phase 2 documentation)

Issue: Want to force direct implementation for one story
- Solution: Set delegation.enabled = false temporarily, or
- Better: Let delegation attempt and fallback if needed (no manual intervention required)

Migration Guide: Enabling in Existing Projects

If you have an existing prd.json without delegation:

  1. Add delegation configuration:
    json { "delegation": { "enabled": true, "fallbackToDirect": true }, "delegationMetrics": { "totalStories": 0, "delegatedCount": 0, "directCount": 0, "successRate": 0, "avgAttempts": 0, "byAgent": {}, "byType": {}, "detectionAccuracy": null } }

  2. Add story-level fields (optional - will be populated automatically):
    json { "id": "US-001", "detectedType": null, "delegatedTo": null }

  3. Run autonomous loop - delegation activates automatically for remaining stories

See Also


Examples

See references/examples.md for:

  • Story splitting patterns
  • Acceptance criteria templates
  • Complete prd.json examples
  • progress.md and progress-summary.md formats

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.