Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add grahama1970/agent-skills --skill "scillm"
Install specific skill from multi-skill repository
# Description
>
# SKILL.md
name: scillm
description: >
Managed scillm Paved Path execution.
Provides strict contract-compliant tools for Text Batch, VLM, and Lean4 Proving.
Uses parallel_acompletions_iter for reliable large-scale processing.
allowed-tools: Bash, Read
triggers:
- batch LLM calls
- parallel completions
- describe image
- prove mathematically
- extract JSON
metadata:
short-description: Scillm Paved Path (Text, VLM, Proofs)
Scillm Paved Path Skill
This skill provides contract-compliant wrappers around scillm for robust agent operations.
It enforces the patterns defined in SCILLM_PAVED_PATH_CONTRACT.md.
Features
- Strict
uv runExecution: No global environment dependencies (outside ofuv). - Parallel Iterators: Uses
parallel_acompletions_iterfor fault-tolerant batch processing. - Multimodal Standards: Correctly formats VLM payloads.
- VLM Inputs: Accepts file paths, HTTPS URLs, or
data:URIs;--inline-remote-images(orSCILLM_INLINE_REMOTE_IMAGES=1) downloads remote assets before dispatch, and--dry-runpreviews payloads without live calls. - Preflight Helpers:
run.sh preflight ...shells intoscillm.paved.sanity_preflightandlist_models_openai_likefor Step 07 readiness checks. - JSON Strict by Default:
--jsonautomatically enablesSCILLM_JSON_STRICT, with optional--schema,--retry-invalid-json, and repair flags.
Usage Guide
1. Text Batch Processing (batch.py)
Use for large-scale text extraction or summarization.
Command:
.pi/skills/scillm/run.sh batch --input prompts.jsonl --output results.jsonl --json
Input Format (JSONL):
{"prompt": "Summarize this article..."}
{"prompt": "Extract names from...", "id": "123"}
Code Pattern (Python):
The skill implements this Paved Path pattern:
from scillm.batch import parallel_acompletions_iter
reqs = [
{"model": "model-id", "messages": [{"role": "user", "content": "prompt"}]}
]
async for res in parallel_acompletions_iter(reqs, concurrency=6):
if res["ok"]:
print(res["content"])
2. VLM / Multimodal (vlm.py)
Use for describing images, diagrams, or Tables.
Command:
.pi/skills/scillm/run.sh vlm describe image.png --prompt "Extract table data" --json
- Supports
--inline-remote-images(with optional--inline-remote-timeout) to download HTTPS assets when the gateway cannot reach them, and--dry-runto print the payload without making an API call (used by sanity scripts).
Batch Command:
.pi/skills/scillm/run.sh vlm batch --input images.jsonl
Code Pattern (Python):
The skill enforces the correct VLM message structure:
messages = [{
"role": "user",
"content": [
{"type": "text", "text": "Describe this..."},
{"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
]
}]
await acompletion(..., messages=messages)
3. Lean4 Proving (prove.py)
Use for formal verification steps.
Command:
.pi/skills/scillm/run.sh prove "Prove that n + 0 = n"
4. Preflight + Model Discovery (preflight.py)
Use to run paved-step sanity_preflight and list models without bespoke scripts.
Commands:
# Model availability + auth style
.pi/skills/scillm/run.sh preflight preflight --model "$CHUTES_MODEL_ID" --json
# List models (returns JSON array)
.pi/skills/scillm/run.sh preflight models --json
These commands exit non-zero when the model is unavailable, making them CI-friendly.
Infrastructure
- Entry Point:
run.sh(dispatches viauv run) - Dependencies: Defined in
pyproject.toml(scillm,typer) - Verification:
sanity.shverifies CLI help and structural integrity.
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.