Manage Apple Reminders via the `remindctl` CLI on macOS (list, add, edit, complete, delete)....
npx skills add millord237/10x-outreach-skill --skill "analytics"
Install specific skill from multi-skill repository
# Description
|
# SKILL.md
name: analytics
description: |
Campaign and outreach analytics skill. Use this skill when the user wants to view
performance metrics, campaign statistics, or analyze outreach effectiveness.
Provides insights on email open rates, response rates, and platform engagement.
allowed-tools:
- Bash
- Read
- Write
- Glob
- Grep
- AskUserQuestion
Analytics Skill
Provides comprehensive analytics and reporting for the 10x Outreach System.
When to Use This Skill
Use this skill when the user:
- Wants to see campaign performance metrics
- Asks about email open/click/response rates
- Needs outreach effectiveness analysis
- Wants to compare campaign performance
- Requests statistics or reports
When NOT to Use This Skill
Do NOT use this skill for:
- Sending emails → use outreach-manager
- Creating campaigns → use workflow-engine
- Finding people → use discovery-engine
Capabilities
- Campaign Metrics - Track emails sent, opened, clicked, replied
- Platform Analytics - LinkedIn, Twitter, Instagram engagement stats
- Response Analysis - Reply rates, sentiment, conversion tracking
- Trend Reports - Daily, weekly, monthly performance trends
- Comparative Analysis - Compare campaigns, templates, approaches
MCP Integration Guidelines
Primary MCP: None (Internal Analytics)
This skill primarily uses internal log analysis and metrics collection.
When to Use MCPs
| Operation | MCP | Tool |
|---|---|---|
| Email tracking | Gmail | Check replies via inbox-reader |
| Web research | Exa | Competitor analysis |
| Browser metrics | Browser-Use | Social platform stats |
Analytics Data Sources
| Source | Location | Data Type |
|---|---|---|
| Campaign logs | output/logs/campaigns/ |
Email sends, results |
| Tool usage | output/logs/tool-usage/ |
MCP/tool call metrics |
| Workflows | campaigns/completed/ |
Workflow execution data |
| Rate limits | In-memory | Current rate status |
Commands Reference
View Campaign Statistics
python .claude/scripts/analytics.py campaign --id CAMPAIGN_ID
View Daily Summary
python .claude/scripts/analytics.py daily --date 2024-01-15
View Weekly Report
python .claude/scripts/analytics.py weekly
Export Report
python .claude/scripts/analytics.py export --format csv --output report.csv
Metrics Tracked
Email Metrics
- Sent - Total emails sent
- Delivered - Successfully delivered
- Bounced - Delivery failures
- Opened - Opened by recipient (if tracking enabled)
- Clicked - Link clicks (if tracking enabled)
- Replied - Responses received
Platform Metrics
- LinkedIn - Connections sent/accepted, messages sent/replied, profile views
- Twitter - Follows, DMs sent/replied, likes, retweets
- Instagram - Follows, DMs sent/replied, likes, comments
Workflow Metrics
- Started - Workflows initiated
- Completed - Successfully finished
- Failed - Errors encountered
- Duration - Time to completion
Report Templates
Campaign Summary
═══════════════════════════════════════════════════════════════
CAMPAIGN ANALYTICS
═══════════════════════════════════════════════════════════════
📊 CAMPAIGN: [Campaign Name]
📅 PERIOD: [Start Date] - [End Date]
EMAIL PERFORMANCE:
┌─────────────┬──────────┬─────────┐
│ Metric │ Count │ Rate │
├─────────────┼──────────┼─────────┤
│ Sent │ 100 │ 100% │
│ Delivered │ 98 │ 98% │
│ Opened │ 45 │ 45% │
│ Clicked │ 12 │ 12% │
│ Replied │ 8 │ 8% │
└─────────────┴──────────┴─────────┘
BEST PERFORMING:
- Template: "partnership_intro" (52% open rate)
- Subject: "Quick question about..." (48% open rate)
- Day: Tuesday (highest engagement)
- Time: 10:00 AM PST (best response rate)
═══════════════════════════════════════════════════════════════
Platform Comparison
═══════════════════════════════════════════════════════════════
PLATFORM COMPARISON
═══════════════════════════════════════════════════════════════
ENGAGEMENT BY PLATFORM:
┌─────────────┬──────────┬───────────┬─────────────┐
│ Platform │ Actions │ Responses │ Conv. Rate │
├─────────────┼──────────┼───────────┼─────────────┤
│ LinkedIn │ 50 │ 15 │ 30% │
│ Twitter │ 30 │ 8 │ 27% │
│ Instagram │ 20 │ 4 │ 20% │
│ Email │ 100 │ 12 │ 12% │
└─────────────┴──────────┴───────────┴─────────────┘
RECOMMENDATION: LinkedIn showing highest conversion rate.
Consider increasing LinkedIn outreach volume.
═══════════════════════════════════════════════════════════════
Implementation
Step 1: Gather Data
Read campaign logs and compile metrics:
# List recent campaigns
ls -la output/logs/campaigns/
# Parse campaign data
python .claude/scripts/analytics.py parse --dir output/logs/campaigns/
Step 2: Calculate Metrics
# Example metrics calculation
metrics = {
'sent': len(campaign_logs),
'delivered': len([l for l in logs if l['status'] == 'delivered']),
'replied': len([l for l in logs if l['replied']]),
'open_rate': delivered / sent * 100,
'response_rate': replied / sent * 100
}
Step 3: Present Report
Format and display the report using the templates above.
Example Conversation
User: "Show me analytics for my last campaign"
Assistant:
- Check for recent campaigns in
output/logs/campaigns/ - Parse the campaign data
- Calculate key metrics
- Present formatted report
- Offer insights and recommendations
Environment Variables
# Analytics Configuration
ANALYTICS_RETENTION_DAYS=90
TRACK_OPENS=true
TRACK_CLICKS=true
REPORT_TIMEZONE=America/Los_Angeles
Best Practices
- Regular Reviews - Check analytics weekly to optimize campaigns
- A/B Testing - Compare different templates and approaches
- Trend Analysis - Look for patterns over time
- Actionable Insights - Use data to improve future campaigns
- Privacy Compliance - Respect tracking consent preferences
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.