whatiskadudoing

Function Composition - Building from Small Pieces

0
0
# Install this skill:
npx skills add whatiskadudoing/fp-ts-skills --skill "Function Composition - Building from Small Pieces"

Install specific skill from multi-skill repository

# Description

Practical patterns for composing functions in TypeScript using pipe, flow, and functional design principles

# SKILL.md


name: Function Composition - Building from Small Pieces
description: Practical patterns for composing functions in TypeScript using pipe, flow, and functional design principles
version: 1.0.0
author: Claude
tags:
- functional-programming
- typescript
- composition
- pipe
- flow
- fp-ts
- practical-patterns


Function Composition - Building from Small Pieces

The core idea is simple:

pipe(data, fn1, fn2, fn3) === fn3(fn2(fn1(data)))

That's it. No category theory needed. Just chain functions together, left to right.


1. pipe() - Your New Best Friend

The Basic Pattern

import { pipe } from 'fp-ts/function'

// Instead of nested calls:
const result = formatOutput(calculateTotal(validateInput(parseData(rawInput))))

// Write it as a pipeline:
const result = pipe(
  rawInput,
  parseData,
  validateInput,
  calculateTotal,
  formatOutput
)

Why This Matters

Before (nested calls):

// Read from inside out, right to left - confusing
const userName = capitalize(trim(getProperty('name')(user)))

After (pipe):

// Read top to bottom, left to right - natural
const userName = pipe(
  user,
  getProperty('name'),
  trim,
  capitalize
)

Real Example: Processing User Input

import { pipe } from 'fp-ts/function'

interface UserInput {
  email: string
  name: string
  age: string
}

interface CleanUser {
  email: string
  name: string
  age: number
}

// Small, focused functions
const trimEmail = (input: UserInput): UserInput => ({
  ...input,
  email: input.email.trim().toLowerCase()
})

const trimName = (input: UserInput): UserInput => ({
  ...input,
  name: input.name.trim()
})

const parseAge = (input: UserInput): CleanUser => ({
  ...input,
  age: parseInt(input.age, 10) || 0
})

// Compose them
const cleanUserInput = (raw: UserInput): CleanUser =>
  pipe(raw, trimEmail, trimName, parseAge)

// Use it
cleanUserInput({ email: '  [email protected]  ', name: '  Alice  ', age: '30' })
// { email: '[email protected]', name: 'Alice', age: 30 }

2. Building Reusable Utilities

The key is making small functions that do one thing well.

String Utilities

import { pipe, flow } from 'fp-ts/function'

// Basic building blocks
const trim = (s: string): string => s.trim()
const lowercase = (s: string): string => s.toLowerCase()
const uppercase = (s: string): string => s.toUpperCase()
const replace = (pattern: RegExp, replacement: string) =>
  (s: string): string => s.replace(pattern, replacement)
const prefix = (pre: string) => (s: string): string => `${pre}${s}`
const suffix = (suf: string) => (s: string): string => `${s}${suf}`

// Combine them into useful utilities
const slugify = flow(
  trim,
  lowercase,
  replace(/\s+/g, '-'),
  replace(/[^a-z0-9-]/g, '')
)

const titleCase = flow(
  trim,
  lowercase,
  replace(/\b\w/g, c => c.toUpperCase())
)

const kebabCase = flow(
  trim,
  replace(/([a-z])([A-Z])/g, '$1-$2'),
  lowercase,
  replace(/\s+/g, '-')
)

// Use them
slugify('  Hello World! ')     // 'hello-world'
titleCase('hello world')       // 'Hello World'
kebabCase('myVariableName')    // 'my-variable-name'

Number Utilities

const clamp = (min: number, max: number) =>
  (n: number): number => Math.max(min, Math.min(max, n))

const round = (decimals: number) =>
  (n: number): number => Math.round(n * 10 ** decimals) / 10 ** decimals

const multiply = (factor: number) =>
  (n: number): number => n * factor

const add = (amount: number) =>
  (n: number): number => n + amount

// Combine for specific use cases
const toPercentage = flow(
  multiply(100),
  round(1),
  suffix('%')
)

const formatPrice = flow(
  round(2),
  n => n.toFixed(2),
  prefix('$')
)

const normalizeScore = flow(
  clamp(0, 100),
  round(0)
)

// Use them
toPercentage(0.8567)  // '85.7%'
formatPrice(19.999)   // '$20.00'
normalizeScore(105)   // 100

Array Utilities

import * as A from 'fp-ts/Array'
import { pipe, flow } from 'fp-ts/function'

// Property accessors
const prop = <T, K extends keyof T>(key: K) =>
  (obj: T): T[K] => obj[key]

// Predicates
const isNotNull = <T>(value: T | null | undefined): value is T =>
  value != null

const hasLength = (min: number) =>
  (arr: readonly unknown[]): boolean => arr.length >= min

// Combining filters and maps
interface Product {
  id: string
  name: string
  price: number
  inStock: boolean
}

const getInStockProductNames = flow(
  A.filter((p: Product) => p.inStock),
  A.map(prop('name'))
)

const getTotalValue = flow(
  A.map((p: Product) => p.price),
  A.reduce(0, (acc, price) => acc + price)
)

const getProductsSortedByPrice = flow(
  A.sort<Product>((a, b) => a.price - b.price)
)

3. Data-Last for Flexibility

Why Argument Order Matters

// Data-first: Hard to compose
const map1 = <A, B>(arr: A[], fn: (a: A) => B): B[] => arr.map(fn)

// Can't easily create reusable functions:
const doubleAll = (arr: number[]) => map1(arr, n => n * 2)  // Must wrap

// Data-last: Easy to compose
const map2 = <A, B>(fn: (a: A) => B) => (arr: A[]): B[] => arr.map(fn)

// Create reusable functions by partial application:
const doubleAll = map2((n: number) => n * 2)

// Works naturally in pipes:
pipe([1, 2, 3], doubleAll)  // [2, 4, 6]

The Pattern

// General rule: configuration first, data last

// Good: Configuration -> Data
const filter = <A>(predicate: (a: A) => boolean) =>
  (arr: A[]): A[] => arr.filter(predicate)

const map = <A, B>(fn: (a: A) => B) =>
  (arr: A[]): B[] => arr.map(fn)

const formatWith = (formatter: Intl.NumberFormat) =>
  (n: number): string => formatter.format(n)

// All work smoothly in pipes:
const processNumbers = flow(
  filter((n: number) => n > 0),
  map(n => n * 2),
  formatWith(new Intl.NumberFormat('en-US'))
)

Converting Data-First APIs

// Many built-in methods are data-first (method on object)
// Wrap them to be data-last

// Date formatting
const formatDate = (options: Intl.DateTimeFormatOptions) =>
  (locale: string) =>
    (date: Date): string => date.toLocaleDateString(locale, options)

const formatShortDate = formatDate({ month: 'short', day: 'numeric' })('en-US')

pipe(new Date(), formatShortDate)  // 'Jan 30'

// JSON operations
const parseJSON = <T>() =>
  (str: string): T => JSON.parse(str)

const stringifyJSON = (indent?: number) =>
  <T>(data: T): string => JSON.stringify(data, null, indent)

// Regular expressions
const match = (regex: RegExp) =>
  (str: string): RegExpMatchArray | null => str.match(regex)

const test = (regex: RegExp) =>
  (str: string): boolean => regex.test(str)

const split = (separator: string | RegExp) =>
  (str: string): string[] => str.split(separator)

4. When Composition Helps (And When It Doesn't)

Good Uses for Composition

1. Multi-step data transformations:

// Processing API responses
const processApiResponse = flow(
  extractData,
  normalizeFields,
  validateSchema,
  transformForUI
)

2. Building specialized functions:

// Currency formatters from a general formatter
const formatCurrency = (locale: string, currency: string) =>
  (amount: number): string =>
    new Intl.NumberFormat(locale, { style: 'currency', currency }).format(amount)

const formatUSD = formatCurrency('en-US', 'USD')
const formatEUR = formatCurrency('de-DE', 'EUR')
const formatGBP = formatCurrency('en-GB', 'GBP')

3. Validation chains:

const validateEmail = flow(
  trim,
  lowercase,
  (email: string) => email.includes('@') ? email : null
)

const validateUsername = flow(
  trim,
  (name: string) => name.length >= 3 ? name : null
)

4. Event handlers:

const handleFormSubmit = flow(
  preventDefault,
  extractFormData,
  validateForm,
  submitToAPI
)

When NOT to Compose

1. When a simple function is clearer:

// Overengineered:
const isAdult = flow(
  prop<Person, 'age'>('age'),
  gte(18)
)

// Just write it:
const isAdult = (person: Person): boolean => person.age >= 18

2. When you need multiple inputs:

// Awkward with composition:
const calculateDiscount = (price: number, discountPercent: number): number =>
  pipe(
    price,
    multiply(1 - discountPercent / 100)
  )
// The discountPercent is awkwardly captured

// Just use a regular function:
const calculateDiscount = (price: number, discountPercent: number): number =>
  price * (1 - discountPercent / 100)

3. When debugging becomes hard:

// If you can't figure out what's happening:
const mysteryPipeline = flow(fn1, fn2, fn3, fn4, fn5, fn6, fn7)

// Break it up and name the stages:
const parse = flow(fn1, fn2)
const validate = flow(fn3, fn4)
const transform = flow(fn5, fn6, fn7)

// Or just use a regular function with intermediate variables:
const processData = (input: Input): Output => {
  const parsed = parse(input)
  const validated = validate(parsed)
  const transformed = transform(validated)
  return transformed
}

4. When the team doesn't know the pattern:

// If your team isn't familiar with FP:
const result = pipe(
  data,
  A.filter(isActive),
  A.map(getName),
  A.sort(ordString.compare)
)

// Consider the more familiar version:
const result = data
  .filter(isActive)
  .map(getName)
  .sort((a, b) => a.localeCompare(b))

Decision Guide

Situation Use Composition?
Multi-step transformation Yes
Building reusable utilities Yes
Single operation No
Multiple unrelated inputs No
Complex branching logic Maybe not
Team unfamiliar with FP Start simple

5. Debugging Pipelines

The trace Function

// Simple debug helper
const trace = <A>(label: string) =>
  (value: A): A => {
    console.log(`${label}:`, value)
    return value
  }

// Use it in pipelines
const result = pipe(
  input,
  trace('input'),
  step1,
  trace('after step1'),
  step2,
  trace('after step2'),
  step3,
  trace('final')
)

Conditional Tracing

// Only trace in development
const traceIf = (enabled: boolean) =>
  <A>(label: string) =>
    (value: A): A => {
      if (enabled) console.log(`${label}:`, value)
      return value
    }

const debug = traceIf(process.env.NODE_ENV === 'development')

pipe(
  data,
  debug('input'),
  transform,
  debug('output')
)

Structured Logging

// More sophisticated tracing
interface TraceOptions {
  label: string
  transform?: (value: unknown) => unknown
  condition?: (value: unknown) => boolean
}

const traceWith = (options: TraceOptions) =>
  <A>(value: A): A => {
    if (!options.condition || options.condition(value)) {
      const output = options.transform ? options.transform(value) : value
      console.log(`[${options.label}]`, output)
    }
    return value
  }

// Use it
pipe(
  users,
  traceWith({ label: 'users', transform: arr => `count: ${arr.length}` }),
  A.filter(isActive),
  traceWith({ label: 'active', transform: arr => `count: ${arr.length}` })
)

Breakpoint Debugging

// Insert a breakpoint
const breakpoint = <A>(value: A): A => {
  debugger  // Execution pauses here
  return value
}

pipe(
  data,
  step1,
  breakpoint,  // Inspect value here
  step2
)

Type Checking Mid-Pipeline

// Verify types are what you expect
const assertType = <Expected>() =>
  <Actual extends Expected>(value: Actual): Actual => value

pipe(
  data,
  parseInput,
  assertType<{ name: string; age: number }>(),  // TypeScript error if wrong
  formatOutput
)

Practical Patterns

Pattern 1: Data Processing Pipeline

import { pipe, flow } from 'fp-ts/function'
import * as A from 'fp-ts/Array'
import * as O from 'fp-ts/Option'

interface RawRecord {
  id: string
  timestamp: string
  value: string
  status: string
}

interface ProcessedRecord {
  id: string
  date: Date
  value: number
  isActive: boolean
}

// Individual processing steps
const parseTimestamp = (r: RawRecord) => ({
  ...r,
  date: new Date(r.timestamp)
})

const parseValue = (r: { id: string; date: Date; value: string; status: string }) => ({
  id: r.id,
  date: r.date,
  value: parseFloat(r.value) || 0,
  isActive: r.status === 'active'
})

const isValid = (r: ProcessedRecord): boolean =>
  !isNaN(r.date.getTime()) && r.value >= 0

const sortByDate = A.sort<ProcessedRecord>((a, b) =>
  a.date.getTime() - b.date.getTime()
)

// Compose into a pipeline
const processRecords = flow(
  A.map(parseTimestamp),
  A.map(parseValue),
  A.filter(isValid),
  sortByDate
)

// Use it
const result = processRecords(rawData)

Pattern 2: Creating Specialized Functions

// General HTTP client
interface RequestConfig {
  baseUrl: string
  headers: Record<string, string>
}

const createFetcher = (config: RequestConfig) =>
  (endpoint: string) =>
    <T>(): Promise<T> =>
      fetch(`${config.baseUrl}${endpoint}`, { headers: config.headers })
        .then(r => r.json())

// Create specialized fetchers
const apiConfig = {
  baseUrl: 'https://api.example.com',
  headers: { 'Authorization': 'Bearer token123' }
}

const apiFetch = createFetcher(apiConfig)

// Even more specialized
const fetchUsers = apiFetch('/users')<User[]>
const fetchProducts = apiFetch('/products')<Product[]>
const fetchOrders = apiFetch('/orders')<Order[]>

Pattern 3: Composing Validators

import * as E from 'fp-ts/Either'
import { pipe } from 'fp-ts/function'

type ValidationError = string
type Validator<T> = (value: T) => E.Either<ValidationError, T>

// Basic validators
const nonEmpty: Validator<string> = (s) =>
  s.length > 0
    ? E.right(s)
    : E.left('Value cannot be empty')

const minLength = (min: number): Validator<string> => (s) =>
  s.length >= min
    ? E.right(s)
    : E.left(`Must be at least ${min} characters`)

const maxLength = (max: number): Validator<string> => (s) =>
  s.length <= max
    ? E.right(s)
    : E.left(`Must be at most ${max} characters`)

const matches = (pattern: RegExp, message: string): Validator<string> => (s) =>
  pattern.test(s)
    ? E.right(s)
    : E.left(message)

// Compose validators
const validateUsername = (input: string): E.Either<ValidationError, string> =>
  pipe(
    E.right(input),
    E.flatMap(nonEmpty),
    E.flatMap(minLength(3)),
    E.flatMap(maxLength(20)),
    E.flatMap(matches(/^[a-zA-Z0-9_]+$/, 'Only letters, numbers, and underscores'))
  )

const validateEmail = (input: string): E.Either<ValidationError, string> =>
  pipe(
    E.right(input),
    E.flatMap(nonEmpty),
    E.flatMap(matches(/^[^\s@]+@[^\s@]+\.[^\s@]+$/, 'Invalid email format'))
  )

Pattern 4: Chaining API Transformations

import * as TE from 'fp-ts/TaskEither'
import { pipe } from 'fp-ts/function'

interface ApiUser { id: number; name: string; email: string }
interface ApiPosts { userId: number; title: string; body: string }[]
interface UserWithPosts { user: ApiUser; posts: ApiPosts; postCount: number }

// API calls as TaskEither
const fetchUser = (id: number): TE.TaskEither<Error, ApiUser> =>
  TE.tryCatch(
    () => fetch(`/api/users/${id}`).then(r => r.json()),
    (e) => new Error(String(e))
  )

const fetchUserPosts = (userId: number): TE.TaskEither<Error, ApiPosts> =>
  TE.tryCatch(
    () => fetch(`/api/users/${userId}/posts`).then(r => r.json()),
    (e) => new Error(String(e))
  )

// Combine into a pipeline
const getUserWithPosts = (userId: number): TE.TaskEither<Error, UserWithPosts> =>
  pipe(
    fetchUser(userId),
    TE.flatMap(user =>
      pipe(
        fetchUserPosts(user.id),
        TE.map(posts => ({
          user,
          posts,
          postCount: posts.length
        }))
      )
    )
  )

// Usage
const program = pipe(
  getUserWithPosts(123),
  TE.map(data => console.log(`${data.user.name} has ${data.postCount} posts`)),
  TE.mapLeft(error => console.error('Failed:', error.message))
)

program()  // Execute the async operation

Pattern 5: Configurable Utilities

// Configuration-driven formatting
interface FormatConfig {
  locale: string
  currency: string
  dateFormat: Intl.DateTimeFormatOptions
  numberFormat: Intl.NumberFormatOptions
}

const createFormatter = (config: FormatConfig) => ({
  currency: (amount: number): string =>
    new Intl.NumberFormat(config.locale, {
      style: 'currency',
      currency: config.currency
    }).format(amount),

  date: (date: Date): string =>
    date.toLocaleDateString(config.locale, config.dateFormat),

  number: (n: number): string =>
    new Intl.NumberFormat(config.locale, config.numberFormat).format(n),

  percent: (n: number): string =>
    new Intl.NumberFormat(config.locale, { style: 'percent' }).format(n)
})

// Create region-specific formatters
const usFormatter = createFormatter({
  locale: 'en-US',
  currency: 'USD',
  dateFormat: { month: 'short', day: 'numeric', year: 'numeric' },
  numberFormat: { maximumFractionDigits: 2 }
})

const euFormatter = createFormatter({
  locale: 'de-DE',
  currency: 'EUR',
  dateFormat: { day: '2-digit', month: '2-digit', year: 'numeric' },
  numberFormat: { maximumFractionDigits: 2 }
})

// Use them
usFormatter.currency(1234.56)  // '$1,234.56'
euFormatter.currency(1234.56)  // '1.234,56 EUR'

Quick Reference

pipe vs flow

// pipe: Start with a value, transform immediately
const result = pipe(value, fn1, fn2, fn3)

// flow: Create a reusable function
const transform = flow(fn1, fn2, fn3)
const result = transform(value)

Creating Composable Functions

// Data-last for pipes
const filter = <A>(pred: (a: A) => boolean) => (arr: A[]): A[] => arr.filter(pred)
const map = <A, B>(fn: (a: A) => B) => (arr: A[]): B[] => arr.map(fn)

// Configuration first, data last
const format = (options: Options) => (value: Value): string => ...

Debug Helpers

const trace = <A>(label: string) => (a: A): A => { console.log(label, a); return a }
const breakpoint = <A>(a: A): A => { debugger; return a }

When to Use

Scenario Approach
Transform data through steps pipe(data, step1, step2, ...)
Create reusable transform flow(step1, step2, ...)
Simple single operation Regular function
Multiple unrelated inputs Regular function
Team learning FP Start with pipe, add flow later

Summary

Function composition is about building complex behavior from simple pieces:

  1. Start with pipe - Chain operations on data, read top to bottom
  2. Extract reusable utilities - Small functions that do one thing well
  3. Use data-last - Configuration first, data last enables composition
  4. Know when to stop - Not everything needs to be composed
  5. Debug with trace - Insert logging without breaking the pipeline

The goal isn't to compose everything. The goal is clearer, more maintainable code. Use composition when it helps, skip it when it doesn't.

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.