YYH211

fastgpt-workflow-generator

199
20
# Install this skill:
npx skills add YYH211/Claude-meta-skill --skill "fastgpt-workflow-generator"

Install specific skill from multi-skill repository

# Description

Generates production-ready FastGPT workflow JSON from natural language requirements. Uses AI-powered semantic template matching from built-in workflows (document translation, sales training, resume screening, financial news). Performs three-layer validation (format, connections, logic completeness). Supports incremental modifications to add/remove/modify nodes. Activates when user asks to "create FastGPT workflow", "generate workflow JSON", "design FastGPT application", or mentions workflow automation, multi-agent systems, or FastGPT templates.

# SKILL.md


name: fastgpt-workflow-generator
description: Generates production-ready FastGPT workflow JSON from natural language requirements. Uses AI-powered semantic template matching from built-in workflows (document translation, sales training, resume screening, financial news). Performs three-layer validation (format, connections, logic completeness). Supports incremental modifications to add/remove/modify nodes. Activates when user asks to "create FastGPT workflow", "generate workflow JSON", "design FastGPT application", or mentions workflow automation, multi-agent systems, or FastGPT templates.


FastGPT Workflow Generator

Automatically generate production-ready FastGPT workflow JSON from natural language requirements

When to Use This Skill

Use this skill when you need to:

  • Create new workflows from scratch: User asks to "create a FastGPT workflow for X purpose"
  • Generate based on templates: User wants to build workflows similar to existing patterns (document processing, AI chat, data analysis, multi-agent systems)
  • Modify existing workflows: User needs to add/remove/update nodes in an existing workflow JSON
  • Validate workflow JSON: User has a workflow JSON that needs verification or fixing
  • Design multi-agent systems: User mentions parallel processing, agent coordination, or workflow orchestration
  • Automate workflow creation: User provides requirements document and needs executable JSON
  • Convert requirements to JSON: User has specifications and wants a FastGPT-compatible workflow

Trigger Keywords: FastGPT, workflow, JSON, multi-agent, ๅทฅไฝœๆต, template matching, workflow automation, node configuration, workflow validation


Core Workflow

This skill follows a 5-phase process to generate production-ready workflow JSON:

Phase 1: Requirements Analysis

Goal: Extract structured requirements from natural language input

Process:
1. Identify request type:
- Create from scratch
- Based on template
- Modify existing workflow
- Validate/fix existing JSON

  1. Extract key information using AI semantic analysis:
    json { "purpose": "Workflow objective (e.g., 'Travel planning assistance')", "domain": "Application domain (travel/event/document/data/general)", "complexity": "simple | medium | complex", "features": ["aiChat", "knowledgeBase", "httpRequest", "parallel"], "inputs": ["userChatInput", "city", "date"], "outputs": ["Complete plan", "Recommendations"], "externalIntegrations": ["Weather API", "Feishu API"], "specialRequirements": ["Multi-agent", "Real-time data"] }

  2. Completeness check: If information is insufficient, clarify through dialogue

Output: Structured requirements object


Phase 2: Template Matching

Goal: Find the most similar built-in template

Built-in Templates (stored in templates/ directory):
- templates/ๆ–‡ๆกฃ็ฟป่ฏ‘ๅŠฉๆ‰‹.json - Simple workflow (document processing)
- templates/้”€ๅ”ฎ้™ช็ปƒๅคงๅธˆ.json - Medium complexity (conversational AI)
- templates/็ฎ€ๅކ็ญ›้€‰ๅŠฉๆ‰‹_้ฃžไนฆ.json - Complex workflow (data processing + external integration)
- templates/AI้‡‘่žๆ—ฅๆŠฅ.json - Scheduled trigger + multi-agent (news aggregation)

Matching Strategy:

Step 1: Coarse Filtering (Metadata-based)

Calculate similarity scores:
- Domain match: travel vs travel = 1.0, travel vs event = 0.3
- Complexity match: simple vs simple = 1.0, simple vs complex = 0.3
- Feature overlap: Jaccard similarity of feature sets
- Node count similarity: 1 - |count1 - count2| / max(count1, count2)

Combined score = 0.3 * domain + 0.2 * complexity + 0.3 * features + 0.2 * nodeCount

Select Top 3 candidate templates

Step 2: Fine Filtering (Semantic Similarity)

For Top 3 candidates:
1. Analyze user requirements vs template characteristics
2. Evaluate workflow structure similarity
3. Calculate comprehensive score

Final score = 0.3 * domain + 0.2 * complexity + 0.3 * features + 0.2 * semantic

Step 3: Selection Strategy

- Highest score < 0.5: Start from blank template
- Highest score 0.5-0.7: Use template as reference, major modifications
- Highest score > 0.7: Use template as base, minor adjustments

Output:
- Best matching template JSON object
- Matching analysis report
- Modification suggestions list


Phase 3: JSON Generation

Scenario 1: Generate Based on Template

1. Copy template structure

2. Modify nodes
   - Keep: structurally similar nodes (workflowStart, userGuide)
   - Modify: nodes requiring prompt/parameter adjustments
   - Delete: unnecessary nodes
   - Add: new requirement nodes

3. Regenerate NodeId
   function generateNodeId(nodeType, nodeName, existingIds) {
     // Fixed ID mapping
     if (nodeType === 'workflowStart') return 'workflowStart';
     if (nodeType === 'userGuide' || nodeType === 'systemConfig') return 'userGuide';

     // Generate semantic ID (camelCase)
     const baseName = nodeName.replace(/[\s\u4e00-\u9fa5]+/g, '');
     let nodeId = baseName ? `${baseName}Node` : `${nodeType}Node`;

     // Ensure uniqueness
     let counter = 1;
     while (existingIds.has(nodeId)) {
       nodeId = `${baseName}Node_${counter}`;
       counter++;
     }

     return nodeId;
   }

4. Update references
   - Traverse all inputs, replace old nodeId with new nodeId
   - Update edges' source/target
   - Handle two reference formats:
     - Array: ["nodeId", "key"]
     - Template: {{$nodeId.key$}}  (Note: double braces with single $)

5. Auto-layout positions (hierarchical layout algorithm)
   function autoLayout(nodes, edges) {
     // Topological sort to determine layers
     const layers = topologicalLayering(nodes, edges);

     // Calculate positions for each layer
     const LAYER_GAP_X = 350;
     const NODE_GAP_Y = 150;

     layers.forEach((layer, layerIndex) => {
       const x = -200 + layerIndex * LAYER_GAP_X;
       const totalHeight = (layer.length - 1) * NODE_GAP_Y;
       const startY = -totalHeight / 2;

       layer.forEach((nodeId, nodeIndex) => {
         positions[nodeId] = {
           x: x,
           y: startY + nodeIndex * NODE_GAP_Y
         };
       });
     });

     // Fixed position for special nodes
     positions['userGuide'] = { x: -600, y: -250 };
   }

6. Update configuration
   - Modify chatConfig.welcomeText
   - Update chatConfig.variables

Scenario 2: Create from Scratch

1. Determine node list
   - Required: workflowStart, userGuide
   - Add based on features: chatNode, datasetSearchNode, httpRequest468, etc.
   - Required: answerNode (output node)

2. Generate nodes and connections
   - Use standard node templates
   - Fill required fields
   - Customize inputs/outputs based on requirements

3. Calculate positions and generate configuration

Output: Complete FastGPT workflow JSON


Phase 4: Validation

Level 1: JSON Format Validation

โœ… JSON is parseable
โœ… Top level contains nodes, edges, chatConfig
โœ… Each node contains: nodeId, name, flowNodeType, position, inputs, outputs
โœ… flowNodeType is in valid type list (40+ types)
โœ… position contains x, y numeric coordinates

Level 2: Node Connection Validation

โœ… edges' source/target nodes exist
โœ… sourceHandle/targetHandle format correct (nodeId-source-right, nodeId-target-left)
โœ… Node input references' nodes and output keys exist
โœ… Reference types match (string โ†’ string)
โœ… Template references {{$nodeId.key$}} nodes and keys exist
โœ… No self-loops, no duplicate connections

Level 3: Logic Completeness Validation

โœ… Required nodes exist (workflowStart, userGuide, at least one output node)
โœ… All nodes reachable from workflowStart (connectivity)
โœ… No illegal cycles (unless using loop node)
โœ… loop nodes correctly configured with parentNodeId and childrenNodeIdList
โœ… No dead ends (non-output nodes without outgoing edges)
โœ… All required inputs have values

Output: Validation report (containing errors, warnings, fix suggestions)


Phase 5: Incremental Modification (Optional)

Use Cases: Add/delete/modify nodes

Processing Steps:

1. Understand modification intent

Use AI to analyze user request, extract:
{
  "action": "add" | "delete" | "modify" | "reconnect",
  "targetNodes": ["aiChatNode"],
  "insertBefore": "aiChatNode",
  "newNodes": [{ "type": "datasetSearchNode", "name": "Knowledge Base Search" }],
  "modifications": {
    "aiChatNode": {
      "inputs": { "quoteQA": ["knowledgeBaseSearch", "searchResult"] }
    }
  }
}

2. Execute modifications

- Add node: generate new node, reconnect, calculate position
- Delete node: remove node, bypass reconnect, clean references
- Modify node: update inputs/outputs, validate references

3. Re-layout and validate


Examples

Example 1: Simple AI Q&A Workflow

User Request:

"Create a simple AI Q&A workflow where users input questions and AI responds directly"

Skill Processing:

  1. Requirements Analysis
    json { "purpose": "AI question answering", "domain": "general", "complexity": "simple", "features": ["aiChat"], "inputs": ["userChatInput"], "outputs": ["AI response"] }

  2. Template Matching

  3. ๆ–‡ๆกฃ็ฟป่ฏ‘ๅŠฉๆ‰‹.json - Score: 0.85 (simple workflow, direct processing)

  4. JSON Generation

  5. Use template, modify systemPrompt and welcomeText

  6. Validation Result

  7. โœ… All three layers pass validation

Generated JSON (key parts):

{
  "nodes": [
    {
      "nodeId": "userGuide",
      "name": "System Configuration",
      "flowNodeType": "userGuide",
      "position": {"x": -600, "y": -250}
    },
    {
      "nodeId": "workflowStart",
      "name": "Start",
      "flowNodeType": "workflowStart",
      "position": {"x": -150, "y": 100},
      "outputs": [
        {"key": "userChatInput", "type": "static", "valueType": "string"}
      ]
    },
    {
      "nodeId": "aiChatNode",
      "name": "AI Response",
      "flowNodeType": "chatNode",
      "position": {"x": 200, "y": 100},
      "inputs": [
        {
          "key": "model",
          "valueType": "string",
          "value": "gpt-4"
        },
        {
          "key": "systemPrompt",
          "valueType": "string",
          "value": "You are a professional AI assistant that can answer various questions. Please provide accurate and helpful answers based on user questions."
        },
        {
          "key": "userChatInput",
          "valueType": "string",
          "value": ["workflowStart", "userChatInput"]
        }
      ],
      "outputs": [
        {"key": "answerText", "type": "static", "valueType": "string"}
      ]
    },
    {
      "nodeId": "outputNode",
      "name": "Output Answer",
      "flowNodeType": "answerNode",
      "position": {"x": 550, "y": 100},
      "inputs": [
        {
          "key": "text",
          "valueType": "string",
          "value": ["aiChatNode", "answerText"]
        }
      ]
    }
  ],
  "edges": [
    {
      "source": "workflowStart",
      "target": "aiChatNode",
      "sourceHandle": "workflowStart-source-right",
      "targetHandle": "aiChatNode-target-left"
    },
    {
      "source": "aiChatNode",
      "target": "outputNode",
      "sourceHandle": "aiChatNode-source-right",
      "targetHandle": "outputNode-target-left"
    }
  ],
  "chatConfig": {
    "welcomeText": "Welcome to the AI Q&A assistant! Please enter your question.",
    "variables": []
  }
}

Example 2: Document Translation Workflow (Based on Template)

User Request:

"Create a document translation workflow that translates user-uploaded documents from Chinese to English"

Skill Processing:

  1. Requirements Analysis
    json { "purpose": "Document translation", "domain": "document", "complexity": "medium", "features": ["readFiles", "aiChat", "textOutput"], "inputs": ["userFiles"], "outputs": ["translated document"] }

  2. Template Matching

  3. ๆ–‡ๆกฃ็ฟป่ฏ‘ๅŠฉๆ‰‹.json - Score: 0.95 (perfect match!)

  4. JSON Generation

  5. Use template directly, only adjust language direction in prompt

Generated Workflow Structure:

workflowStart โ†’ readFiles โ†’ translateNode โ†’ outputNode

Key Node Configuration:
- readFiles Node: Reads user-uploaded files
- translateNode (chatNode): AI translates with specialized prompt
- outputNode (answerNode): Outputs translated text


Example 3: Incremental Modification (Add Knowledge Base)

User Request:

"I have an existing AI Q&A workflow (simple_qa_workflow.json),
I want to search the knowledge base first before AI answers,
find relevant information then generate response"

Existing Workflow Structure:

workflowStart โ†’ aiChatNode โ†’ outputNode

Modification Goal:

workflowStart โ†’ knowledgeBaseSearch โ†’ aiChatNode โ†’ outputNode

Skill Processing:

  1. Analyze Modification Intent
    json { "action": "add", "targetNodes": ["aiChatNode"], "insertBefore": "aiChatNode", "newNodes": [ { "type": "datasetSearchNode", "name": "Knowledge Base Search" } ], "modifications": { "aiChatNode": { "inputs": { "quoteQA": ["knowledgeBaseSearch", "searchResult"] } } } }

  2. Execute Modification

  3. Add knowledgeBaseSearch node
  4. Modify edge: workflowStart โ†’ knowledgeBaseSearch
  5. Add edge: knowledgeBaseSearch โ†’ aiChatNode
  6. Modify aiChatNode's inputs (add quoteQA)

  7. Re-layout Positions

  8. workflowStart: (-150, 100)
  9. knowledgeBaseSearch: (50, 100) โ† newly inserted
  10. aiChatNode: (400, 100) โ† shifted right
  11. outputNode: (750, 100) โ† shifted right

  12. Validation Result

  13. โœ… All validations pass

Modified JSON (new and modified parts):

{
  "nodes": [
    {
      "nodeId": "knowledgeBaseSearch",
      "name": "Knowledge Base Search",
      "flowNodeType": "datasetSearchNode",
      "position": {"x": 50, "y": 100},
      "inputs": [
        {
          "key": "datasetIds",
          "valueType": "selectDataset",
          "value": [],
          "required": true
        },
        {
          "key": "searchQuery",
          "valueType": "string",
          "value": ["workflowStart", "userChatInput"],
          "required": true
        },
        {
          "key": "similarity",
          "valueType": "number",
          "value": 0.5
        },
        {
          "key": "limitCount",
          "valueType": "number",
          "value": 5
        }
      ],
      "outputs": [
        {
          "key": "searchResult",
          "type": "static",
          "valueType": "datasetQuote"
        }
      ]
    },
    {
      "nodeId": "aiChatNode",
      "inputs": [
        {
          "key": "quoteQA",
          "valueType": "datasetQuote",
          "value": ["knowledgeBaseSearch", "searchResult"]
        }
      ]
    }
  ],
  "edges": [
    {
      "source": "workflowStart",
      "target": "knowledgeBaseSearch"
    },
    {
      "source": "knowledgeBaseSearch",
      "target": "aiChatNode"
    },
    {
      "source": "aiChatNode",
      "target": "outputNode"
    }
  ]
}

Modification Summary Report:
- โœ… Added 1 node: knowledgeBaseSearch (datasetSearchNode)
- โœ… Modified 1 node: aiChatNode (added quoteQA input)
- โœ… Added 1 edge: knowledgeBaseSearch โ†’ aiChatNode
- โœ… Modified 1 edge: workflowStart โ†’ knowledgeBaseSearch (originally workflowStart โ†’ aiChatNode)
- โœ… Re-layouted all positions


Technical Implementation

NodeId Generation Algorithm

Rules:
1. Fixed IDs: workflowStart, userGuide (systemConfig)
2. Semantic naming: Generate based on node name (remove spaces and Chinese, convert to camelCase)
3. Uniqueness guarantee: If conflict, add _1, _2 suffix

Examples:
- generateNodeId('chatNode', 'Travel Planning Assistant') โ†’ TravelPlanningAssistantNode
- generateNodeId('httpRequest468', 'Weather Query') โ†’ WeatherQueryNode
- generateNodeId('chatNode', 'Assistant', {TravelPlanningAssistantNode}) โ†’ AssistantNode_1

Position Auto-Layout Algorithm

Algorithm: Hierarchical Layout

Steps:
1. Topological sort to determine layers (BFS)
2. Calculate horizontal position and vertical spacing for each layer
3. Fixed position for special nodes (userGuide: {x: -600, y: -250})

Parameters:
- LAYER_GAP_X = 350 (horizontal spacing between layers)
- NODE_GAP_Y = 150 (vertical spacing within layer)
- START_X = -200, START_Y = 0

Reference Format Description

Two Reference Formats:

1. Array Format (direct value reference):

"value": ["workflowStart", "userChatInput"]

2. Template Syntax (string concatenation):

"value": "Please create a plan for me.\n\nDestination: {{$workflowStart.userChatInput$}}\n\nWeather: {{$weatherQueryNode.httpRawResponse$}}"

Important: Template syntax is {{$nodeId.key$}} (double braces with single $)

Special Node Handling

loop Node:
- Must have childrenNodeIdList field
- Child nodes must have parentNodeId field
- Child nodes include: loopStart, [processing nodes...], loopEnd

ifElse Node:
- Has multiple output branches
- Each branch corresponds to different conditions


Best Practices

  • โœ… Always validate at three levels - format, connections, logic
  • โœ… Use meaningful nodeIds - use semantic names (e.g., weatherQueryNode)
  • โœ… Prefer template matching - template-based generation is more reliable than creating from scratch
  • โœ… Use array references for direct values - ["nodeId", "key"]
  • โœ… Use template references for string concatenation - {{$nodeId.key$}}
  • โœ… Auto-layout positions - use auto-layout algorithm
  • โœ… Include system config node - always include userGuide
  • โœ… Test with validation - use built-in validation before importing to FastGPT
  • โœ… Provide clear error messages - include location and fix suggestions
  • โœ… Document modifications - generate modification summary report

Don'ts (Prohibited Practices)

  • โŒ Don't skip validation - never skip validation
  • โŒ Don't use invalid node types - check flowNodeType validity
  • โŒ Don't create circular references without loop nodes - no illegal cycles
  • โŒ Don't forget required fields - nodeId, name, flowNodeType, position, inputs, outputs
  • โŒ Don't use wrong reference format - prohibited: {{nodeId.key}} (missing $)
  • โŒ Don't ignore warnings - warnings should be fixed
  • โŒ Don't hardcode positions - except userGuide, use auto-layout
  • โŒ Don't create unreachable nodes - ensure reachable from workflowStart
  • โŒ Don't generate overly complex workflows - workflows with >20 nodes should be split

Troubleshooting

FAQ

Q1: Import to FastGPT reports "Invalid node type"

A: Check the flowNodeType field, ensure using supported types. Reference references/node_types_reference.md. Common errors:
- chatNode is correct (not aiChat)
- Number suffixes (like httpRequest468) should be retained

Q2: References between nodes not working

A: Check reference format:
- โœ… Correct: ["workflowStart", "userChatInput"] or {{$workflowStart.userChatInput$}}
- โŒ Wrong: {$workflowStart.userChatInput$} (single brace, should be double)

Q3: Some nodes not executing at runtime

A: Use built-in validation to check Level 3, ensure all nodes reachable from workflowStart

Q4: Parallel nodes not executing in parallel

A: Ensure multiple nodes' targets are the same aggregation node, and these nodes have no dependencies

Q5: Loop workflow errors

A: Must use flowNodeType: "loop" node, configure parentNodeId and childrenNodeIdList

Debug Checklist

## Phase 1: JSON Format Check
- [ ] JSON is parseable
- [ ] Contains nodes, edges, chatConfig
- [ ] All strings use double quotes
- [ ] No trailing commas

## Phase 2: Node Check
- [ ] workflowStart node exists
- [ ] At least one output node exists
- [ ] All flowNodeType valid
- [ ] All nodeId unique
- [ ] All position contains x, y

## Phase 3: Connection Check
- [ ] All edges' source and target exist
- [ ] All handle format correct
- [ ] No duplicate edges, no self-loops

## Phase 4: Reference Check
- [ ] All array references' nodes and keys exist
- [ ] All template references' nodes and keys exist
- [ ] Reference types match

## Phase 5: Logic Check
- [ ] All nodes reachable from workflowStart
- [ ] No illegal cycles
- [ ] No dead-end nodes
- [ ] All required inputs have values

## Phase 6: Runtime Test
- [ ] Import to FastGPT without errors
- [ ] Configure necessary parameters
- [ ] Run test cases
- [ ] Check output meets expectations

Quick Reference

Built-in Template Files

  • templates/ๆ–‡ๆกฃ็ฟป่ฏ‘ๅŠฉๆ‰‹.json - Simple workflow, document processing
  • templates/้”€ๅ”ฎ้™ช็ปƒๅคงๅธˆ.json - Medium complexity, conversational AI
  • templates/็ฎ€ๅކ็ญ›้€‰ๅŠฉๆ‰‹_้ฃžไนฆ.json - Complex workflow, data + external integration
  • templates/AI้‡‘่žๆ—ฅๆŠฅ.json - Scheduled trigger, multi-agent

Detailed Documentation

  • references/node_types_reference.md - Complete reference of 40+ node types
  • references/validation_rules.md - Detailed three-layer validation rules
  • references/template_matching.md - Template matching algorithm
  • references/json_structure_spec.md - Complete FastGPT JSON structure specification

Example Documents

  • examples/example1_simple_qa.md - Complete example: Simple Q&A workflow
  • examples/example2_travel_planning.md - Complete example: Travel planning workflow
  • examples/example3_incremental_modify.md - Complete example: Incremental modification

Common Commands

# Validate workflow JSON
node scripts/validate_workflow.js path/to/workflow.json

# Copy template
cp templates/ๆ–‡ๆกฃ็ฟป่ฏ‘ๅŠฉๆ‰‹.json my_workflow.json

# View template list
ls -lh templates/

Version: 1.0
Last Updated: 2025-01-02
Compatibility: FastGPT v4.8+

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.