Manage Apple Reminders via the `remindctl` CLI on macOS (list, add, edit, complete, delete)....
npx skills add amitlals/sap-rpt1-oss-predictor
Or install specific skill: npx add-skill https://github.com/amitlals/sap-rpt1-oss-predictor
# Description
Use SAP-RPT-1-OSS open source tabular foundation model for predictive analytics on SAP business data. Handles classification and regression tasks including customer churn prediction, delivery delay forecasting, payment default risk, demand planning, and financial anomaly detection. Use when asked to predict, forecast, classify, or analyze patterns in SAP tabular data exports (CSV/DataFrame). Runs locally via Hugging Face model.
# SKILL.md
name: sap-rpt1-oss-predictor
description: Use SAP-RPT-1-OSS open source tabular foundation model for predictive analytics on SAP business data. Handles classification and regression tasks including customer churn prediction, delivery delay forecasting, payment default risk, demand planning, and financial anomaly detection. Use when asked to predict, forecast, classify, or analyze patterns in SAP tabular data exports (CSV/DataFrame). Runs locally via Hugging Face model.
SAP-RPT-1-OSS Predictor
SAP-RPT-1-OSS is SAP's open source tabular foundation model (Apache 2.0) for predictions on structured business data. Unlike LLMs that predict text, RPT-1 predicts field values in table rows using in-context learningβno model training required.
Repository: https://github.com/SAP-samples/sap-rpt-1-oss
Model: https://huggingface.co/SAP/sap-rpt-1-oss
Setup
1. Install Package
pip install git+https://github.com/SAP-samples/sap-rpt-1-oss
2. Hugging Face Authentication
Model weights require HF login and license acceptance:
# Install HF CLI
pip install huggingface_hub
# Login (creates ~/.huggingface/token)
huggingface-cli login
Then accept model terms at: https://huggingface.co/SAP/sap-rpt-1-oss
3. Hardware Requirements
| Config | GPU Memory | Context Size | Bagging | Use Case |
|---|---|---|---|---|
| Optimal | 80GB (A100) | 8192 | 8 | Production, best accuracy |
| Standard | 40GB (A6000) | 4096 | 4 | Good balance |
| Minimal | 24GB (RTX 4090) | 2048 | 2 | Development |
| CPU | N/A | 1024 | 1 | Testing only (slow) |
Quick Start
Classification (Customer Churn, Payment Default)
import pandas as pd
from sap_rpt_oss import SAP_RPT_OSS_Classifier
# Load SAP data export
df = pd.read_csv("sap_customers.csv")
X = df.drop(columns=["CHURN_STATUS"])
y = df["CHURN_STATUS"]
# Split data
X_train, X_test = X[:400], X[400:]
y_train, y_test = y[:400], y[400:]
# Initialize and predict
clf = SAP_RPT_OSS_Classifier(max_context_size=4096, bagging=4)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
probabilities = clf.predict_proba(X_test)
Regression (Delivery Delay Days, Demand Quantity)
from sap_rpt_oss import SAP_RPT_OSS_Regressor
reg = SAP_RPT_OSS_Regressor(max_context_size=4096, bagging=4)
reg.fit(X_train, y_train)
predictions = reg.predict(X_test)
Core Workflow
- Extract SAP data β Export to CSV from relevant tables
- Prepare dataset β Include 50-500 rows with known outcomes
- Rename fields β Use semantic names (see Data Preparation)
- Run prediction β Fit on training data, predict on new data
- Interpret results β Probabilities for classification, values for regression
SAP Use Cases
See references/sap-use-cases.md for detailed extraction queries:
- FI-AR: Payment default probability (BSID, BSAD, KNA1)
- FI-GL: Journal entry anomaly detection (ACDOCA, BKPF)
- SD: Delivery delay prediction (VBAK, VBAP, LIKP)
- SD: Customer churn likelihood (VBRK, VBRP, KNA1)
- MM: Vendor performance scoring (EKKO, EKPO, EBAN)
- PP: Production delay risk (AFKO, AFPO)
Data Preparation
Semantic Column Names (Important!)
RPT-1-OSS uses an LLM to embed column names and values. Descriptive names improve accuracy:
# Good: Model understands business context
CUSTOMER_CREDIT_LIMIT, DAYS_SINCE_LAST_ORDER, PAYMENT_DELAY_DAYS
# Bad: Generic names lose semantic value
COL1, VALUE, FIELD_A
Use scripts/prepare_sap_data.py to rename SAP technical fields:
from scripts.prepare_sap_data import SAPDataPrep
prep = SAPDataPrep()
df = prep.rename_sap_fields(df) # BUKRS β COMPANY_CODE, etc.
Dataset Size
- Minimum: 50 training examples
- Recommended: 200-500 examples
- Maximum context: 8192 rows (GPU dependent)
Scripts
scripts/rpt1_oss_predict.py- Local model prediction wrapperscripts/prepare_sap_data.py- SAP field renaming and SQL templatesscripts/batch_predict.py- Chunked processing for large datasets
Alternative: RPT Playground API
For users with SAP access, the closed-source RPT-1 is available via API:
from scripts.rpt1_api import RPT1Client
client = RPT1Client(token="YOUR_RPT_TOKEN") # Get from rpt-playground.sap.com
result = client.predict(data="data.csv", target_column="TARGET", task_type="classification")
See references/api-reference.md for RPT Playground API documentation.
Limitations
- Tabular data only (no images, text documents)
- Requires labeled examples for in-context learning
- First prediction is slow (model loading)
- GPU strongly recommended for production use
# README.md
SAP-RPT-1-OSS Predictor Skill
A Claude skill for using SAP's open source SAP-RPT-1-OSS tabular foundation model for predictive analytics on SAP business data.
Overview
SAP-RPT-1-OSS is SAP's open source (Apache 2.0) tabular foundation model announced at TechEd 2025. Unlike LLMs that predict text, RPT-1 predicts field values in table rows using in-context learningβno model training required.
- Repository: https://github.com/SAP-samples/sap-rpt-1-oss
- Model: https://huggingface.co/SAP/sap-rpt-1-oss
This skill enables Claude to:
- Set up and authenticate with Hugging Face for model access
- Prepare SAP data extracts for prediction
- Run classification and regression using the local OSS model
- Handle batch processing for large datasets
- Optionally use RPT Playground API as alternative
Use Cases
| SAP Module | Prediction Type | Example |
|---|---|---|
| FI-AR | Payment Default Risk | Predict which invoices will go unpaid |
| SD | Customer Churn | Identify at-risk customers |
| SD/LE | Delivery Delays | Forecast shipping delays |
| FI-GL | Journal Anomalies | Detect unusual postings |
| MM | Vendor Performance | Score supplier reliability |
| PP/MM | Demand Forecast | Predict future quantities |
Structure
sap-rpt1-oss-predictor/
βββ SKILL.md # Main skill instructions
βββ scripts/
β βββ rpt1_oss_predict.py # Local OSS model wrapper
β βββ prepare_sap_data.py # SAP data extraction utilities
β βββ batch_predict.py # Batch processing for large datasets
β βββ rpt1_api.py # Optional: RPT Playground API client
βββ references/
β βββ sap-use-cases.md # Detailed SAP prediction scenarios
β βββ api-reference.md # Complete API documentation
βββ examples/
βββ customer_churn_sample.csv
βββ payment_default_sample.csv
Requirements
- Hugging Face account (free) - for model access
- GPU recommended: 24-80GB VRAM for optimal performance
- Python 3.11+ with pandas, torch
Quick Start
# Install model
pip install git+https://github.com/SAP-samples/sap-rpt-1-oss
# Authenticate with Hugging Face
huggingface-cli login
from sap_rpt_oss import SAP_RPT_OSS_Classifier
clf = SAP_RPT_OSS_Classifier(max_context_size=4096, bagging=4)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
How to Use This Skill
Installation Options
Option 1 β Claude Code (CLI):
git clone https://github.com/amitlals/sap-rpt1-oss-predictor
cd sap-rpt1-oss-predictor
claude # Skill auto-detected via .claude-plugin/marketplace.json
Option 2 β Claude.ai (Pro/Team only):
1. Go to claude.ai β Projects (left sidebar)
2. Create new project β Add to Project Knowledge β Upload SKILL.md
3. Start chatting in that project
Option 3 β Claude.ai (Free tier):
1. Copy contents of SKILL.md
2. Paste at the start of your conversation as context
3. Then ask your prediction questions
Option 4 β GitHub Copilot:
- Clone repo, skill available in .github/skills/ directory
Example Prompts
Once installed, prompt Claude with:
Setup:
Set up SAP-RPT-1-OSS for predictions on my SAP data
Classification:
Predict which customers will churn using SAP-RPT-1-OSS
Classify payment default risk for these SAP invoices
Forecasting:
Forecast demand for next quarter using my SAP sales data
Data Preparation:
Help me extract SAP FI-AR data for payment prediction
Batch Processing:
Run batch predictions on 50,000 SAP records using RPT-1
Related Resources
Contributors
- @amitlals - Creator & Maintainer
- Claude by Anthropic - AI Pair Programmer (code generation, documentation, skill architecture)
- GitHub Copilot - AI Code Assistant (code suggestions, completions)
License
Apache 2.0
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.