Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add dirnbauer/webconsulting-skills --skill "ai-search-optimization"
Install specific skill from multi-skill repository
# Description
Answer Engine Optimization (AEO) and Generative Engine Optimization (GEO) strategies for AI-powered search visibility in ChatGPT, Perplexity, Google AI Overviews, and other AI search platforms.
# SKILL.md
name: ai-search-optimization
description: Answer Engine Optimization (AEO) and Generative Engine Optimization (GEO) strategies for AI-powered search visibility in ChatGPT, Perplexity, Google AI Overviews, and other AI search platforms.
version: 1.0.0
triggers:
- aeo
- geo
- ai search
- chatgpt search
- perplexity
- ai overviews
- generative search
- llm visibility
- answer engine
AI Search Optimization (AEO & GEO)
Scope: Optimizing content for AI-powered search engines and answer engines
This skill covers strategies for visibility in ChatGPT, Perplexity, Google AI Overviews, Microsoft Copilot, and other generative AI platforms.
1. Understanding AEO & GEO
What is AEO (Answer Engine Optimization)?
Answer Engine Optimization focuses on structuring content to provide direct, concise answers to user queries through AI-powered platforms. Unlike traditional SEO which aims for link clicks, AEO optimizes for being cited as the answer source.
Target platforms:
- Google AI Overviews (formerly SGE)
- Perplexity AI
- ChatGPT Search
- Microsoft Copilot Search
- Voice assistants (Siri, Alexa, Google Assistant)
What is GEO (Generative Engine Optimization)?
Generative Engine Optimization is the broader discipline of enhancing content visibility within AI-generated search results. It targets generative engines that synthesize answers from multiple sources rather than presenting traditional link lists.
Key differences from traditional SEO:
| Aspect | Traditional SEO | AEO/GEO |
|---|---|---|
| Goal | Rank in SERPs | Be cited in AI answers |
| User behavior | Click through to site | Get answer directly |
| Content format | Keyword-optimized pages | Structured, citable content |
| Success metric | Click-through rate | Citation frequency |
| Query type | Short keywords | Conversational, long-tail |
The AI Search Landscape (2025-2026)
- Google AI Overviews: 2B+ monthly users across 200 countries (TechCrunch)
- Google AI Mode: 100M+ monthly users in US and India
- ChatGPT Search: Real-time web search with citations
- Perplexity AI: Real-time citation engine, emphasis on freshness
- Microsoft Copilot Search: Bing integration with generative AI
- Zero-click searches: About 60% of global searches end without a click (neotype.ai)
2. Content Structure for AI Readability
Semantic HTML Structure
AI systems extract information more effectively from well-structured content:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Descriptive, Question-Answering Title</title>
</head>
<body>
<article>
<header>
<h1>Primary Topic as Question or Clear Statement</h1>
<p class="summary">Direct 2-3 sentence answer to the main question.</p>
</header>
<main>
<section>
<h2>Subtopic Heading</h2>
<p>Detailed explanation with facts and data.</p>
<ul>
<li>Key point 1 with specific information</li>
<li>Key point 2 with verifiable data</li>
<li>Key point 3 with actionable insight</li>
</ul>
</section>
</main>
<aside>
<h3>Quick Facts</h3>
<dl>
<dt>Term</dt>
<dd>Definition</dd>
</dl>
</aside>
</article>
</body>
</html>
Heading Hierarchy Best Practices
# H1: Main Topic (contains primary question/keyword)
βββ ## H2: Major subtopic
βββ ### H3: Specific aspect
βββ #### H4: Details (use sparingly)
Rules:
- Single H1 per page
- H1 should answer "What is this page about?"
- Use question-format headings when appropriate
- Include target keywords naturally
The Inverted Pyramid Pattern
Structure content for AI extraction:
βββββββββββββββββββββββββββββββββββββββ
β DIRECT ANSWER (First 1-2 β β AI extracts this
β sentences answer the query) β
βββββββββββββββββββββββββββββββββββββββ€
β KEY FACTS & CONTEXT β β Supporting evidence
β (Bullet points, data, quotes) β
βββββββββββββββββββββββββββββββββββββββ€
β DETAILED EXPLANATION β β Comprehensive coverage
β (Background, methodology, β
β examples, case studies) β
βββββββββββββββββββββββββββββββββββββββ€
β RELATED TOPICS β β Topic authority signals
β (Links to related content) β
βββββββββββββββββββββββββββββββββββββββ
Lists and Tables for Extraction
AI engines prefer structured data formats:
<!-- Comparison Table -->
<table>
<caption>Feature Comparison: Product A vs Product B</caption>
<thead>
<tr>
<th>Feature</th>
<th>Product A</th>
<th>Product B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$99/month</td>
<td>$149/month</td>
</tr>
<!-- More rows -->
</tbody>
</table>
<!-- Definition List for Terms -->
<dl>
<dt>AEO</dt>
<dd>Answer Engine Optimization - optimizing content for direct answers</dd>
<dt>GEO</dt>
<dd>Generative Engine Optimization - visibility in AI-generated results</dd>
</dl>
<!-- Step-by-Step Process -->
<ol>
<li>Step one with clear action</li>
<li>Step two with measurable outcome</li>
<li>Step three with verification method</li>
</ol>
3. Schema Markup for AI Understanding
Essential Schema Types
Research shows structured data significantly improves AI search visibility:
- Pages with schema are up to 40% more likely to appear in Google AI Overviews (zarkx.com)
- Organization schema: 2.8x increase in citation frequency
- FAQPage schema: 2.5x rise in answer inclusion
- Article schema: 2.2x boost in content citations
- Sites with 15+ schema types see 2.4x higher citation rates (surgeboom.com)
FAQPage Schema
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "What is Answer Engine Optimization?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Answer Engine Optimization (AEO) is a strategic approach to structuring content so AI platforms like ChatGPT, Perplexity, and Google AI Overviews can easily extract and cite it as direct answers to user queries."
}
},
{
"@type": "Question",
"name": "How is AEO different from SEO?",
"acceptedAnswer": {
"@type": "Answer",
"text": "While SEO focuses on ranking in traditional search results for clicks, AEO optimizes content to be cited directly in AI-generated answers, often resulting in zero-click interactions where users get information without visiting the source."
}
}
]
}
HowTo Schema
{
"@context": "https://schema.org",
"@type": "HowTo",
"name": "How to Optimize Content for AI Search",
"description": "Step-by-step guide to improving visibility in AI-powered search engines",
"totalTime": "PT30M",
"step": [
{
"@type": "HowToStep",
"name": "Structure Content Semantically",
"text": "Use proper HTML5 semantic elements like article, section, and aside",
"position": 1
},
{
"@type": "HowToStep",
"name": "Implement Schema Markup",
"text": "Add FAQPage, HowTo, and Article schema to your pages",
"position": 2
},
{
"@type": "HowToStep",
"name": "Optimize for Conversational Queries",
"text": "Write content that answers natural language questions",
"position": 3
}
]
}
Article Schema with Author
{
"@context": "https://schema.org",
"@type": "Article",
"headline": "Complete Guide to AI Search Optimization",
"description": "Learn how to optimize content for ChatGPT, Perplexity, and Google AI Overviews",
"datePublished": "2025-01-15",
"dateModified": "2025-01-15",
"author": {
"@type": "Person",
"name": "Expert Name",
"url": "https://example.com/about/expert-name",
"jobTitle": "SEO Specialist",
"sameAs": [
"https://linkedin.com/in/expertname",
"https://twitter.com/expertname"
]
},
"publisher": {
"@type": "Organization",
"name": "Company Name",
"logo": {
"@type": "ImageObject",
"url": "https://example.com/logo.png"
}
}
}
Organization Schema
{
"@context": "https://schema.org",
"@type": "Organization",
"name": "Company Name",
"url": "https://example.com",
"logo": "https://example.com/logo.png",
"description": "Brief description of what the organization does",
"foundingDate": "2010",
"sameAs": [
"https://www.linkedin.com/company/companyname",
"https://twitter.com/companyname",
"https://github.com/companyname"
],
"contactPoint": {
"@type": "ContactPoint",
"telephone": "+1-555-123-4567",
"contactType": "customer service",
"availableLanguage": ["English", "German"]
}
}
4. E-E-A-T Signals for AI Trust
Experience, Expertise, Authoritativeness, Trustworthiness
AI systems prioritize content from credible sources. Implement these signals:
Author Bios
<article>
<!-- Content -->
<footer class="author-bio">
<img src="/authors/jane-doe.jpg" alt="Jane Doe" />
<div class="author-info">
<h4>About the Author</h4>
<p class="author-name">Jane Doe, PhD</p>
<p class="author-credentials">
15 years of experience in digital marketing.
Former Head of SEO at Fortune 500 company.
Published in Search Engine Journal, Moz, and Ahrefs Blog.
</p>
<ul class="author-links">
<li><a href="https://linkedin.com/in/janedoe" rel="author">LinkedIn</a></li>
<li><a href="https://twitter.com/janedoe" rel="author">Twitter</a></li>
</ul>
</div>
</footer>
</article>
Trust Signals Checklist
- [ ] Author expertise: Detailed bios with credentials and experience
- [ ] Citations: Link to reputable sources (studies, official docs, experts)
- [ ] Contact information: Clear "About Us" and "Contact" pages
- [ ] HTTPS: Secure connection required
- [ ] Privacy policy: Transparent data handling
- [ ] Update dates: Visible "Last updated" timestamps
- [ ] Original research: Proprietary data, case studies, expert quotes
- [ ] Reviews/testimonials: Third-party validation where applicable
Building Domain Authority
- Earn quality backlinks from reputable industry sites
- Get mentioned in authoritative publications
- Contribute guest posts to established platforms
- Participate in industry forums and communities
- Create original research that others cite
5. Content Freshness Strategy
Update Frequency by Platform
| Platform | Freshness Preference | Recommended Update Cycle |
|---|---|---|
| Perplexity AI | Very high | Every 2-3 days for trending topics |
| ChatGPT Search | High | Weekly updates |
| Google AI Overviews | Moderate | Monthly refresh |
| Bing Copilot | Moderate | Monthly refresh |
Content Refresh Protocol
## Content Freshness Checklist
### Weekly Tasks
- [ ] Update statistics with latest data
- [ ] Refresh screenshots and examples
- [ ] Add new developments or news
- [ ] Update "Last modified" timestamp
### Monthly Tasks
- [ ] Review and update all factual claims
- [ ] Add new sections for emerging topics
- [ ] Update broken links
- [ ] Refresh expert quotes
### Quarterly Tasks
- [ ] Comprehensive content audit
- [ ] Competitive analysis
- [ ] Restructure based on query trends
- [ ] Update all schema markup
Visible Timestamps
<article>
<header>
<h1>Article Title</h1>
<div class="article-meta">
<time datetime="2025-01-15" itemprop="datePublished">
Published: January 15, 2025
</time>
<time datetime="2025-01-15" itemprop="dateModified">
Last Updated: January 15, 2025
</time>
</div>
</header>
<!-- Content -->
</article>
6. Robots.txt for AI Crawlers
Allowing AI Bots
To be indexed by AI search engines, explicitly allow their crawlers:
# robots.txt - AI Search Optimization
# Standard search engines
User-agent: Googlebot
Allow: /
User-agent: Bingbot
Allow: /
# OpenAI (ChatGPT)
User-agent: GPTBot
Allow: /
User-agent: ChatGPT-User
Allow: /
# Perplexity AI
User-agent: PerplexityBot
Allow: /
# Anthropic (Claude)
User-agent: ClaudeBot
Allow: /
User-agent: anthropic-ai
Allow: /
# Google AI (Gemini)
User-agent: Google-Extended
Allow: /
# Meta AI
User-agent: FacebookBot
Allow: /
# Common Crawl (used by many AI systems)
User-agent: CCBot
Allow: /
# Microsoft/Bing AI
User-agent: Applebot
Allow: /
# Default rule
User-agent: *
Allow: /
Disallow: /admin/
Disallow: /private/
# Sitemap
Sitemap: https://example.com/sitemap.xml
Blocking AI Training While Allowing AI Search (Optional)
Some organizations want to be cited in AI search results but don't want their content used to train AI models. Here's how:
Understanding the difference:
| Bot | What it does | Block = |
|---|---|---|
GPTBot |
Crawls for training OpenAI models | Your content won't train future GPT versions |
ChatGPT-User |
Live browsing when users search | ChatGPT can't cite you in real-time answers |
Google-Extended |
Crawls for training Gemini AI | Your content won't train Gemini |
PerplexityBot |
Live search for Perplexity answers | Perplexity can't cite you |
CCBot |
Common Crawl - open training datasets | Your content won't be in public AI training data |
Example: Block training, allow live search citations:
# BLOCK: AI model training (your content won't train future AI)
User-agent: GPTBot
Disallow: /
User-agent: Google-Extended
Disallow: /
User-agent: CCBot
Disallow: /
# ALLOW: Real-time AI search (AI can cite you in answers)
User-agent: ChatGPT-User
Allow: /
User-agent: PerplexityBot
Allow: /
Note: Most businesses focused on AI search visibility should allow all bots (Section 6 above).
Only use this approach if you have specific concerns about AI training on your content.
AI Bot Reference
| Bot Name | Company | Purpose |
|---|---|---|
| GPTBot | OpenAI | Training data & ChatGPT browsing |
| ChatGPT-User | OpenAI | ChatGPT web browsing |
| PerplexityBot | Perplexity | Real-time search & citations |
| ClaudeBot | Anthropic | Training & retrieval |
| anthropic-ai | Anthropic | Claude AI training |
| Google-Extended | Gemini AI training | |
| FacebookBot | Meta | Meta AI training |
| CCBot | Common Crawl | Open dataset for AI training |
7. Conversational Query Optimization
Target Long-Tail, Question-Based Queries
AI search favors natural language:
Traditional keyword: "best project management software"
Conversational queries:
- "What is the best project management software for small teams?"
- "How do I choose project management software for remote work?"
- "Which project management tool has the best free plan?"
Question-Answer Content Pattern
## What is [Topic]?
[Topic] is [direct definition in 1-2 sentences].
### Key characteristics:
- Characteristic 1
- Characteristic 2
- Characteristic 3
## How does [Topic] work?
[Clear explanation of process]
### Step-by-step breakdown:
1. First step
2. Second step
3. Third step
## Why is [Topic] important?
[2-3 sentences on significance]
### Benefits include:
- Benefit 1 with specific outcome
- Benefit 2 with measurable result
- Benefit 3 with real-world application
FAQ Section Template
<section class="faq">
<h2>Frequently Asked Questions</h2>
<details>
<summary>What is Answer Engine Optimization?</summary>
<p>Answer Engine Optimization (AEO) is the practice of...</p>
</details>
<details>
<summary>How is GEO different from traditional SEO?</summary>
<p>While traditional SEO focuses on...</p>
</details>
<details>
<summary>Which AI search platforms should I optimize for?</summary>
<p>The main platforms to consider are...</p>
</details>
</section>
8. Multimedia Optimization
Image Requirements
Perplexity and other AI engines prefer visual content:
<figure>
<img
src="/images/ai-search-diagram.webp"
alt="Diagram showing how AI search engines process and cite content"
width="800"
height="450"
loading="lazy"
/>
<figcaption>
How AI search engines extract and cite content sources
</figcaption>
</figure>
Best practices:
- Minimum 2 unique, relevant images per article
- Descriptive alt text (not keyword stuffing)
- WebP format for performance
- Include diagrams, infographics, process flows
- Add captions with context
Video Integration
<figure class="video-embed">
<iframe
src="https://www.youtube.com/embed/VIDEO_ID"
title="Detailed explanation of AI Search Optimization"
allow="accelerometer; autoplay; clipboard-write; encrypted-media"
allowfullscreen
></iframe>
<figcaption>
Video: Complete guide to optimizing for AI search engines
</figcaption>
</figure>
Video Schema
{
"@context": "https://schema.org",
"@type": "VideoObject",
"name": "AI Search Optimization Tutorial",
"description": "Learn how to optimize content for ChatGPT, Perplexity, and Google AI",
"thumbnailUrl": "https://example.com/video-thumbnail.jpg",
"uploadDate": "2025-01-15",
"duration": "PT10M30S",
"contentUrl": "https://example.com/videos/ai-search-tutorial.mp4"
}
9. Monitoring AI Search Visibility
AI Brand Monitoring Tools
| Tool | Platforms Monitored | Key Features |
|---|---|---|
| Semrush AI Visibility | ChatGPT, Gemini, Perplexity | Free tier, mention tracking |
| Brand24 | ChatGPT, Perplexity, Claude, Gemini | Multi-platform analysis |
| SE Ranking | Google AI Overviews, ChatGPT, Gemini | Share of voice tracking |
| Keyword.com | Google AI Overviews, ChatGPT, Perplexity | Optimization suggestions |
| BrandBeacon.ai | ChatGPT, Perplexity | Competitor benchmarking |
| Sight AI | ChatGPT, Claude, Perplexity | Sentiment analysis |
Key Metrics to Track
- Citation frequency: How often your content is cited
- Brand mentions: Unprompted mentions in AI responses
- Referral traffic: Visits from AI search click-throughs
- Share of voice: Your visibility vs competitors
- Sentiment: Positive/negative context of mentions
Manual Testing Protocol
## Monthly AI Visibility Audit
### Test Queries (adapt to your niche)
1. "What is [your product/service]?"
2. "Best [your category] in [year]"
3. "[Your brand] vs [competitor]"
4. "How to [task your product solves]"
5. "[Your expertise area] best practices"
### Platforms to Test
- [ ] ChatGPT (chat.openai.com)
- [ ] Perplexity (perplexity.ai)
- [ ] Google (check for AI Overviews)
- [ ] Microsoft Copilot (copilot.microsoft.com)
- [ ] Claude (claude.ai)
### Record for Each Query
- Were you cited? (Yes/No)
- Citation context (positive/neutral/negative)
- Competitors mentioned
- Information accuracy
- Suggested improvements
10. AI Search Optimization Checklist
Content Structure
- [ ] Clear H1 with primary topic/question
- [ ] Logical heading hierarchy (H1 > H2 > H3)
- [ ] Direct answer in first 1-2 sentences
- [ ] Bullet points and numbered lists
- [ ] Comparison tables where applicable
- [ ] Definition lists for terminology
Technical Implementation
- [ ] Semantic HTML5 elements (article, section, aside)
- [ ] FAQPage schema on Q&A content
- [ ] HowTo schema on instructional content
- [ ] Article schema with author info
- [ ] Organization schema on about pages
- [ ] robots.txt allows AI crawlers
- [ ] XML sitemap updated and submitted
Authority Signals
- [ ] Detailed author bios with credentials
- [ ] Links to author social profiles
- [ ] Citations to authoritative sources
- [ ] Visible publication and update dates
- [ ] HTTPS enabled
- [ ] Contact information accessible
- [ ] Privacy policy present
Content Quality
- [ ] Original, expert-level content
- [ ] Factual claims supported by sources
- [ ] Regular updates (at least monthly)
- [ ] Addresses conversational queries
- [ ] Includes relevant images with alt text
- [ ] Mobile-responsive design
Monitoring
- [ ] AI visibility monitoring tool configured
- [ ] Monthly manual query testing
- [ ] Competitor citation tracking
- [ ] Referral traffic analysis
- [ ] Content refresh schedule maintained
11. Platform-Specific Optimization
Google AI Overviews
- Pages with schema are up to 40% more likely to appear in AI Overviews
- Focus on featured snippet optimization (still relevant)
- Emphasize E-E-A-T signals
- Target informational and comparison queries
Perplexity AI
- Freshness is critical - update content every 2-3 days for trending topics
- Real-time citations from current sources
- Prefer authoritative domains
- Include unique images and data
ChatGPT Search
- Web browsing uses GPTBot and ChatGPT-User
- Emphasizes recent, authoritative content
- Good at following citations and references
- Benefits from clear, structured content
Microsoft Copilot
- Built on Bing index
- Strong integration with Microsoft ecosystem
- Emphasizes factual, well-sourced content
- Benefits from Bing Webmaster Tools optimization
12. Future-Proofing Your AI Search Strategy
Emerging Trends
- Multimodal search: AI understanding images, video, audio
- Conversational commerce: AI-driven purchase decisions
- Personalized AI responses: Context-aware answer customization
- Agent-based search: AI agents completing tasks autonomously
- Real-time fact-checking: AI validating claims before citation
Adaptation Strategy
## Quarterly Review Checklist
### AI Platform Updates
- [ ] Review new AI search features from major platforms
- [ ] Update robots.txt for new AI bot user agents
- [ ] Test visibility on new/emerging AI platforms
### Content Strategy
- [ ] Analyze which content types get most citations
- [ ] Identify gaps in AI coverage vs competitors
- [ ] Plan new content for underserved queries
### Technical Updates
- [ ] Review schema.org for new relevant types
- [ ] Update structured data implementation
- [ ] Test page speed and Core Web Vitals
13. TYPO3 Implementation Guide
Compatibility: TYPO3 v13.x and v14.x (v14 preferred)
All configurations in this section work on both v13 and v14.
This section covers TYPO3-specific implementation of AEO/GEO strategies using TYPO3 extensions, configuration, and best practices.
Installation Mode: Composer vs Classic
β οΈ Composer Mode Highly Recommended
For AI search optimization, Composer-based TYPO3 installations are strongly recommended.
All extensions in this guide are available via both Composer (Packagist) and TER (Classic Mode).
Why Composer Mode is Essential for Modern TYPO3
| Aspect | Composer Mode | Classic Mode |
|---|---|---|
| Dependency Resolution | Automatic with version constraints | Manual, no transitive dependencies |
| Autoloading | PSR-4 optimized, production-ready | TYPO3 internal, less optimized |
| Security | Separate web root (/public) |
All files in web root |
| Updates | Single command: composer update |
Manual download/upload per extension |
| Reproducibility | composer.lock ensures identical installs |
No version locking mechanism |
| TYPO3 v14 Future | Fully supported | Requires composer.json in all extensions |
Technical Explanation
Composer Mode uses PHP's standard dependency manager to:
-
Resolve Dependencies Automatically: Extensions like
brotkrueml/schemadepend onpsr/http-messageand other packages. Composer resolves the entire dependency tree, ensuring compatible versions are installed. -
Generate Optimized Autoloaders: Composer creates a PSR-4 compliant autoloader that loads classes on-demand, improving performance compared to TYPO3's legacy class loading.
-
Enforce Version Constraints: The
composer.jsonconstraint"typo3/cms-core": "^13.4 || ^14.0"guarantees only compatible versions are installed. -
Enable Security Isolation: The recommended structure places
vendor/,config/, and other sensitive directories outside the web-accessible/publicfolder. -
Support Modern Workflows: CI/CD pipelines, automated testing, and deployment tools expect Composer-based projects.
TYPO3 v14 Breaking Change: In TYPO3 v14, even Classic Mode requires every extension to have a valid composer.json with proper type and extension-key definitions. Extensions without this file will not be detected.
// Required composer.json structure for all extensions (v14+)
{
"name": "vendor/extension-key",
"type": "typo3-cms-extension",
"extra": {
"typo3/cms": {
"extension-key": "extension_key"
}
}
}
Extension Compatibility Matrix
| Extension | TYPO3 v13 | TYPO3 v14 | PHP | Composer | TER | Purpose |
|---|---|---|---|---|---|---|
typo3/cms-seo |
β | β | 8.2+ | β | β | Core SEO (meta tags, sitemaps, canonicals) |
brotkrueml/schema |
β (v4.x) | β (v4.x) | 8.2+ | β | β | Schema.org structured data (JSON-LD) |
yoast-seo-for-typo3/yoast_seo |
β | β | 8.1+ | β | β | Content analysis, readability (v13 only) |
clickstorm/cs_seo |
β (v9.3+) | β (v9.3+) | 8.2+ | β | β | Extended SEO features, evaluations |
13.1 Required Extensions Installation
Composer Mode (Recommended)
# Core SEO extension (meta tags, sitemaps, canonicals)
ddev composer require typo3/cms-seo
# Schema.org structured data (essential for AI search)
# Version constraint ensures v13/v14 compatibility
ddev composer require brotkrueml/schema:"^4.2"
# Optional: Extended SEO features (v13/v14 compatible)
ddev composer require clickstorm/cs_seo:"^9.3"
# In Composer mode, extensions are auto-activated
# Verify installation:
ddev typo3 extension:list | grep -E "seo|schema"
Version Constraints Explained:
{
"require": {
"typo3/cms-seo": "^13.4 || ^14.0",
"brotkrueml/schema": "^4.2"
}
}
^4.2= Any version β₯4.2.0 and <5.0.0 (allows minor/patch updates)^13.4 || ^14.0= Supports both TYPO3 v13.4+ and v14.0+
Classic Mode (TER)
Note: Classic Mode is supported but not recommended. TYPO3 v14 requires
all extensions to have a validcomposer.jsoneven in Classic Mode.
- Download from TER:
- https://extensions.typo3.org/extension/seo
-
https://extensions.typo3.org/extension/schema
-
Install via Extension Manager:
- Backend β Admin Tools β Extensions
- Click "Upload Extension" or use "Get Extensions" to search TER
-
Activate each extension after upload
-
Verify Installation:
- Check Admin Tools β Extensions for active status
- Clear all caches after activation
13.2 Robots.txt Configuration for AI Bots
Configure robots.txt via TYPO3's static routes to allow AI crawlers:
# config/sites/main/config.yaml
routes:
- route: robots.txt
type: staticText
content: |
# Standard search engines
User-agent: Googlebot
Allow: /
User-agent: Bingbot
Allow: /
# OpenAI (ChatGPT)
User-agent: GPTBot
Allow: /
User-agent: ChatGPT-User
Allow: /
# Perplexity AI
User-agent: PerplexityBot
Allow: /
# Anthropic (Claude)
User-agent: ClaudeBot
Allow: /
User-agent: anthropic-ai
Allow: /
# Google AI (Gemini)
User-agent: Google-Extended
Allow: /
# Meta AI
User-agent: FacebookBot
Allow: /
# Common Crawl (used by many AI systems)
User-agent: CCBot
Allow: /
# Default
User-agent: *
Allow: /
Disallow: /typo3/
Disallow: /typo3conf/
Disallow: /typo3temp/
Sitemap: https://example.com/sitemap.xml
13.3 Schema.org Implementation with EXT:schema
Installation and Setup
ddev composer require brotkrueml/schema:"^4.2"
ddev typo3 extension:activate schema
Include the static TypoScript template in your site package.
FAQPage Schema via Fluid ViewHelper
{namespace schema=Brotkrueml\Schema\ViewHelpers}
<schema:type.fAQPage>
<f:for each="{faqItems}" as="faq">
<schema:type.question -as="mainEntity" name="{faq.question}">
<schema:type.answer -as="acceptedAnswer" text="{faq.answer}" />
</schema:type.question>
</f:for>
</schema:type.fAQPage>
Article Schema via Fluid ViewHelper
{namespace schema=Brotkrueml\Schema\ViewHelpers}
<schema:type.article
-id="https://example.com/article/{article.uid}"
headline="{article.title}"
description="{article.teaser}"
datePublished="{article.crdate -> f:format.date(format: 'c')}"
dateModified="{article.tstamp -> f:format.date(format: 'c')}"
>
<schema:type.person -as="author"
name="{article.author.name}"
url="{article.author.profileUrl}"
>
<schema:property -as="sameAs" value="{article.author.linkedIn}" />
<schema:property -as="sameAs" value="{article.author.twitter}" />
</schema:type.person>
<schema:type.organization -as="publisher"
name="{settings.siteName}"
url="{settings.siteUrl}"
>
<schema:type.imageObject -as="logo" url="{settings.logoUrl}" />
</schema:type.organization>
</schema:type.article>
HowTo Schema via Fluid ViewHelper
{namespace schema=Brotkrueml\Schema\ViewHelpers}
<schema:type.howTo
name="How to Optimize Content for AI Search"
description="Step-by-step guide to improving visibility in AI-powered search engines"
>
<f:for each="{steps}" as="step" iteration="iter">
<schema:type.howToStep -as="step"
name="{step.title}"
text="{step.description}"
position="{iter.cycle}"
/>
</f:for>
</schema:type.howTo>
Organization Schema via PHP API (PSR-14 Event)
<?php
declare(strict_types=1);
namespace Vendor\SitePackage\EventListener;
use Brotkrueml\Schema\Event\RenderAdditionalTypesEvent;
use Brotkrueml\Schema\Type\TypeFactory;
use TYPO3\CMS\Core\Attribute\AsEventListener;
#[AsEventListener(identifier: 'site-package/add-organization-schema')]
final readonly class AddOrganizationSchema
{
public function __construct(
private TypeFactory $typeFactory,
) {}
public function __invoke(RenderAdditionalTypesEvent $event): void
{
$organization = $this->typeFactory->create('Organization')
->setProperty('name', 'Your Company Name')
->setProperty('url', 'https://example.com')
->setProperty('logo', 'https://example.com/logo.png')
->setProperty('description', 'Brief company description for AI understanding')
->setProperty('sameAs', [
'https://www.linkedin.com/company/yourcompany',
'https://twitter.com/yourcompany',
'https://github.com/yourcompany',
]);
$contactPoint = $this->typeFactory->create('ContactPoint')
->setProperty('telephone', '+43-1-234567')
->setProperty('contactType', 'customer service')
->setProperty('availableLanguage', ['German', 'English']);
$organization->setProperty('contactPoint', $contactPoint);
$event->addType($organization);
}
}
Dynamic Article Schema via PSR-14 Event
<?php
declare(strict_types=1);
namespace Vendor\SitePackage\EventListener;
use Brotkrueml\Schema\Event\RenderAdditionalTypesEvent;
use Brotkrueml\Schema\Type\TypeFactory;
use TYPO3\CMS\Core\Attribute\AsEventListener;
#[AsEventListener(identifier: 'site-package/add-article-schema')]
final readonly class AddArticleSchema
{
public function __construct(
private TypeFactory $typeFactory,
) {}
public function __invoke(RenderAdditionalTypesEvent $event): void
{
$request = $event->getRequest();
$pageInformation = $request->getAttribute('frontend.page.information');
$page = $pageInformation->getPageRecord();
// Only add Article schema for specific doktypes (e.g., 1 = standard page)
if ((int)$page['doktype'] !== 1) {
return;
}
$article = $this->typeFactory->create('Article')
->setProperty('headline', $page['title'])
->setProperty('description', $page['description'] ?: $page['abstract'])
->setProperty('datePublished', date('c', $page['crdate']))
->setProperty('dateModified', date('c', $page['tstamp']));
// Add author if available
if (!empty($page['author'])) {
$author = $this->typeFactory->create('Person')
->setProperty('name', $page['author']);
$article->setProperty('author', $author);
}
$event->addType($article);
}
}
13.4 Content Freshness with Last Modified Headers
TypoScript Configuration
# Expose last modified date in HTTP headers
config {
sendCacheHeaders = 1
additionalHeaders {
10 {
header = X-Content-Last-Modified
value = TEXT
value.data = page:SYS_LASTCHANGED
value.strftime = %Y-%m-%dT%H:%M:%S%z
}
}
}
# Display last updated date in content
lib.lastModified = TEXT
lib.lastModified {
data = page:SYS_LASTCHANGED
strftime = %B %d, %Y
wrap = <time datetime="|" itemprop="dateModified">Last updated: |</time>
}
Fluid Template for Visible Timestamps
<article itemscope itemtype="https://schema.org/Article">
<header>
<h1 itemprop="headline">{page.title}</h1>
<div class="article-meta">
<time datetime="{page.crdate -> f:format.date(format: 'c')}" itemprop="datePublished">
Published: <f:format.date format="F j, Y">{page.crdate}</f:format.date>
</time>
<time datetime="{page.SYS_LASTCHANGED -> f:format.date(format: 'c')}" itemprop="dateModified">
Last Updated: <f:format.date format="F j, Y">{page.SYS_LASTCHANGED}</f:format.date>
</time>
</div>
</header>
<!-- Content -->
</article>
13.5 Author Bio Schema for E-E-A-T
TCA Extension for Author Fields
<?php
// Configuration/TCA/Overrides/pages.php
use TYPO3\CMS\Core\Utility\ExtensionManagementUtility;
$additionalColumns = [
'tx_sitepackage_author_name' => [
'label' => 'Author Name',
'config' => [
'type' => 'input',
'size' => 50,
'max' => 255,
],
],
'tx_sitepackage_author_title' => [
'label' => 'Author Title/Credentials',
'config' => [
'type' => 'input',
'size' => 50,
'max' => 255,
],
],
'tx_sitepackage_author_bio' => [
'label' => 'Author Bio',
'config' => [
'type' => 'text',
'rows' => 5,
],
],
'tx_sitepackage_author_linkedin' => [
'label' => 'Author LinkedIn URL',
'config' => [
'type' => 'link',
'allowedTypes' => ['url'],
],
],
];
ExtensionManagementUtility::addTCAcolumns('pages', $additionalColumns);
ExtensionManagementUtility::addToAllTCAtypes(
'pages',
'--div--;Author,tx_sitepackage_author_name,tx_sitepackage_author_title,tx_sitepackage_author_bio,tx_sitepackage_author_linkedin'
);
Author Schema PSR-14 Event Listener
<?php
declare(strict_types=1);
namespace Vendor\SitePackage\EventListener;
use Brotkrueml\Schema\Event\RenderAdditionalTypesEvent;
use Brotkrueml\Schema\Type\TypeFactory;
use TYPO3\CMS\Core\Attribute\AsEventListener;
#[AsEventListener(identifier: 'site-package/add-author-schema')]
final readonly class AddAuthorSchema
{
public function __construct(
private TypeFactory $typeFactory,
) {}
public function __invoke(RenderAdditionalTypesEvent $event): void
{
$request = $event->getRequest();
$pageInformation = $request->getAttribute('frontend.page.information');
$page = $pageInformation->getPageRecord();
if (empty($page['tx_sitepackage_author_name'])) {
return;
}
$author = $this->typeFactory->create('Person')
->setProperty('name', $page['tx_sitepackage_author_name'])
->setProperty('jobTitle', $page['tx_sitepackage_author_title'] ?? '')
->setProperty('description', $page['tx_sitepackage_author_bio'] ?? '');
if (!empty($page['tx_sitepackage_author_linkedin'])) {
$author->setProperty('sameAs', [$page['tx_sitepackage_author_linkedin']]);
}
$event->addType($author);
}
}
13.6 FAQ Content Element with Schema
Content Block Definition (EXT:content_blocks)
# ContentBlocks/ContentElements/faq-accordion/config.yaml
name: vendor/faq-accordion
typeName: faq_accordion
title: FAQ Accordion
description: FAQ with structured data for AI search
group: common
fields:
- identifier: faq_items
type: Collection
labelField: question
fields:
- identifier: question
type: Text
required: true
- identifier: answer
type: Textarea
enableRichtext: true
required: true
Fluid Template with Schema
<!-- ContentBlocks/ContentElements/faq-accordion/Resources/Private/Frontend.html -->
{namespace schema=Brotkrueml\Schema\ViewHelpers}
<section class="faq-accordion">
<schema:type.fAQPage>
<f:for each="{data.faq_items}" as="item">
<schema:type.question -as="mainEntity" name="{item.question}">
<schema:type.answer -as="acceptedAnswer">
<schema:property -as="text" value="{item.answer -> f:format.stripTags()}" />
</schema:type.answer>
</schema:type.question>
<details class="faq-item">
<summary class="faq-question">{item.question}</summary>
<div class="faq-answer">
<f:format.html>{item.answer}</f:format.html>
</div>
</details>
</f:for>
</schema:type.fAQPage>
</section>
13.7 Breadcrumb Schema
Fluid ViewHelper Implementation
{namespace schema=Brotkrueml\Schema\ViewHelpers}
<nav aria-label="Breadcrumb">
<schema:type.breadcrumbList>
<f:for each="{breadcrumbs}" as="crumb" iteration="iter">
<schema:type.listItem -as="itemListElement" position="{iter.cycle}">
<schema:property -as="name" value="{crumb.title}" />
<schema:property -as="item" value="{crumb.url}" />
</schema:type.listItem>
</f:for>
</schema:type.breadcrumbList>
<ol class="breadcrumb">
<f:for each="{breadcrumbs}" as="crumb" iteration="iter">
<li class="breadcrumb-item{f:if(condition: iter.isLast, then: ' active')}">
<f:if condition="{iter.isLast}">
<f:then>{crumb.title}</f:then>
<f:else>
<a href="{crumb.url}">{crumb.title}</a>
</f:else>
</f:if>
</li>
</f:for>
</ol>
</nav>
13.8 Semantic HTML via Fluid Layouts
<!-- Resources/Private/Layouts/Default.html -->
<!DOCTYPE html>
<html lang="{siteLanguage.locale.languageCode}">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<f:render section="HeaderAssets" optional="true" />
</head>
<body>
<header role="banner">
<f:render partial="Header" />
</header>
<nav role="navigation" aria-label="Main navigation">
<f:render partial="Navigation/Main" />
</nav>
<main role="main">
<article>
<header>
<h1>{page.title}</h1>
<f:if condition="{page.subtitle}">
<p class="lead">{page.subtitle}</p>
</f:if>
</header>
<section>
<f:render section="Content" />
</section>
</article>
</main>
<aside role="complementary">
<f:render partial="Sidebar" optional="true" />
</aside>
<footer role="contentinfo">
<f:render partial="Footer" />
</footer>
</body>
</html>
13.9 TYPO3 AI Search Optimization Checklist
Extensions & Configuration
- [ ] EXT:seo installed and configured
- [ ] EXT:schema (brotkrueml/schema ^4.2) installed
- [ ] Static TypoScript templates included
- [ ] robots.txt configured via site config with AI bot rules
Schema Implementation
- [ ] Organization schema on all pages
- [ ] Article schema on content pages
- [ ] FAQPage schema on FAQ content
- [ ] HowTo schema on tutorial content
- [ ] BreadcrumbList on all pages
- [ ] Author/Person schema with credentials
Content Structure
- [ ] Semantic HTML5 elements in Fluid templates
- [ ] Proper heading hierarchy (single H1)
- [ ] Visible publication and update dates
- [ ] Author bios with credentials
- [ ] Alt text on all images via FAL
Technical
- [ ] SYS_LASTCHANGED used for content freshness
- [ ] Cache headers configured
- [ ] XML sitemap via EXT:seo
- [ ] Canonical URLs configured
- [ ] hreflang for multi-language sites
13.10 Debugging Schema Output
Admin Panel Integration
EXT:schema integrates with TYPO3's Admin Panel. Enable it to see generated JSON-LD:
# config/system/settings.php
$GLOBALS['TYPO3_CONF_VARS']['BE']['adminPanel'] = true;
Validation Tools
After implementing structured data, validate using:
- Schema Markup Validator: https://validator.schema.org/
- Google Rich Results Test: https://search.google.com/test/rich-results
- Google Search Console: Submit and monitor structured data
View Generated JSON-LD
# Fetch page and extract JSON-LD
curl -s https://example.com/page | grep -o '<script type="application/ld+json">.*</script>'
14. Markdown & MDX Implementation
This section covers AI search optimization for static sites and documentation platforms using Markdown (MD) and MDX.
14.1 Frontmatter for AI Search
Use frontmatter to define structured metadata that frameworks can transform into meta tags and structured data:
---
title: "How to Optimize Content for AI Search Engines"
description: "Complete guide to AEO and GEO strategies for ChatGPT, Perplexity, and Google AI Overviews visibility."
date: 2025-01-15
lastmod: 2025-01-15
author:
name: "Jane Doe"
title: "SEO Specialist"
linkedin: "https://linkedin.com/in/janedoe"
twitter: "https://twitter.com/janedoe"
tags: ["aeo", "geo", "ai-search", "seo"]
category: "SEO"
image: "/images/ai-search-guide.jpg"
schema:
type: "Article"
wordCount: 2500
draft: false
---
14.2 Content Structure Best Practices
# Main Topic as H1 (Single, Contains Primary Question/Keyword)
Brief 2-3 sentence summary answering the main question directly.
This paragraph is what AI engines extract first.
## What is [Topic]?
Direct definition in 1-2 sentences. [Topic] is...
### Key Characteristics
- **Point 1:** Specific, factual information
- **Point 2:** Verifiable data with source
- **Point 3:** Actionable insight
## How Does [Topic] Work?
Clear process explanation.
1. First step with expected outcome
2. Second step with verification
3. Third step with result
## Why is [Topic] Important?
| Benefit | Impact | Evidence |
|---------|--------|----------|
| Benefit 1 | Measurable result | Source/study |
| Benefit 2 | Specific outcome | Data point |
## Frequently Asked Questions
<details>
<summary>Question 1?</summary>
Direct answer to question 1.
</details>
<details>
<summary>Question 2?</summary>
Direct answer to question 2.
</details>
14.3 JSON-LD in MDX (Next.js / Astro)
Next.js App Router
// components/JsonLd.tsx
type JsonLdProps = {
data: Record<string, unknown>;
};
export function JsonLd({ data }: JsonLdProps) {
return (
<script
type="application/ld+json"
dangerouslySetInnerHTML={{
__html: JSON.stringify(data).replace(/</g, '\\u003c'),
}}
/>
);
}
---
title: "AI Search Optimization Guide"
---
import { JsonLd } from '@/components/JsonLd';
<JsonLd data={{
"@context": "https://schema.org",
"@type": "Article",
"headline": "AI Search Optimization Guide",
"author": {
"@type": "Person",
"name": "Jane Doe"
},
"datePublished": "2025-01-15",
"dateModified": "2025-01-15"
}} />
# AI Search Optimization Guide
Content here...
Astro with astro-seo-schema
npm install schema-dts astro-seo-schema
---
// src/layouts/Article.astro
import { Schema } from 'astro-seo-schema';
const { frontmatter } = Astro.props;
---
<html>
<head>
<Schema item={{
"@context": "https://schema.org",
"@type": "Article",
"headline": frontmatter.title,
"description": frontmatter.description,
"author": {
"@type": "Person",
"name": frontmatter.author.name
},
"datePublished": frontmatter.date,
"dateModified": frontmatter.lastmod
}} />
</head>
<body>
<slot />
</body>
</html>
14.4 FAQ Schema Component for MDX
// components/FAQ.tsx
import { JsonLd } from './JsonLd';
type FAQItem = {
question: string;
answer: string;
};
type FAQProps = {
items: FAQItem[];
};
export function FAQ({ items }: FAQProps) {
const schemaData = {
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": items.map(item => ({
"@type": "Question",
"name": item.question,
"acceptedAnswer": {
"@type": "Answer",
"text": item.answer
}
}))
};
return (
<>
<JsonLd data={schemaData} />
<section className="faq">
{items.map((item, index) => (
<details key={index}>
<summary>{item.question}</summary>
<p>{item.answer}</p>
</details>
))}
</section>
</>
);
}
import { FAQ } from '@/components/FAQ';
## Frequently Asked Questions
<FAQ items={[
{
question: "What is AEO?",
answer: "Answer Engine Optimization (AEO) is the practice of optimizing content to be cited directly in AI-generated answers."
},
{
question: "How is GEO different from SEO?",
answer: "GEO targets AI-generated search results, while traditional SEO focuses on ranking in link-based search results."
}
]} />
14.5 Raw MDX View with URL Parameter
Enable viewing raw MDX source for transparency and AI training accessibility:
Next.js Implementation
// next.config.js - Rewrite .md URLs to API
module.exports = {
async rewrites() {
return [
{
source: '/docs/:path*.md',
destination: '/api/raw-mdx?path=:path*',
},
];
},
};
// app/api/raw-mdx/route.ts
import { NextRequest, NextResponse } from 'next/server';
import fs from 'fs';
import path from 'path';
export async function GET(request: NextRequest) {
const searchParams = request.nextUrl.searchParams;
const filePath = searchParams.get('path');
if (!filePath) {
return NextResponse.json({ error: 'Path required' }, { status: 400 });
}
// Prevent directory traversal
const safePath = filePath.replace(/\.\./g, '');
const mdxPath = path.join(process.cwd(), 'content', `${safePath}.mdx`);
try {
const content = fs.readFileSync(mdxPath, 'utf8');
return new NextResponse(content, {
headers: { 'Content-Type': 'text/plain; charset=utf-8' },
});
} catch {
return NextResponse.json({ error: 'Not found' }, { status: 404 });
}
}
Usage:
- /docs/getting-started β Rendered page
- /docs/getting-started.md β Raw MDX source
Query Parameter Alternative
// app/docs/[...slug]/page.tsx
import { notFound } from 'next/navigation';
import fs from 'fs';
import path from 'path';
type Props = {
params: { slug: string[] };
searchParams: { raw?: string };
};
export default async function Page({ params, searchParams }: Props) {
const slug = params.slug.join('/');
const mdxPath = path.join(process.cwd(), 'content', `${slug}.mdx`);
// Show raw MDX if ?raw=true
if (searchParams.raw === 'true') {
try {
const rawContent = fs.readFileSync(mdxPath, 'utf8');
return (
<article>
<header>
<p className="text-sm text-gray-500">
Raw MDX source β’ <a href={`/docs/${slug}`}>View rendered</a>
</p>
</header>
<pre className="p-4 bg-gray-50 rounded overflow-auto">
<code>{rawContent}</code>
</pre>
</article>
);
} catch {
notFound();
}
}
// Normal MDX rendering
// ... your MDX processing
}
Usage:
- /docs/getting-started β Rendered page
- /docs/getting-started?raw=true β Raw MDX source
14.6 Automatic Schema Generation from Frontmatter
// lib/generateSchema.ts
type Frontmatter = {
title: string;
description: string;
date: string;
lastmod?: string;
author?: {
name: string;
title?: string;
linkedin?: string;
twitter?: string;
};
image?: string;
schema?: {
type?: 'Article' | 'HowTo' | 'FAQPage';
wordCount?: number;
};
};
export function generateSchema(frontmatter: Frontmatter, url: string) {
const schemaType = frontmatter.schema?.type || 'Article';
const baseSchema = {
"@context": "https://schema.org",
"@type": schemaType,
"headline": frontmatter.title,
"description": frontmatter.description,
"url": url,
"datePublished": frontmatter.date,
"dateModified": frontmatter.lastmod || frontmatter.date,
};
if (frontmatter.author) {
const sameAs = [
frontmatter.author.linkedin,
frontmatter.author.twitter,
].filter(Boolean);
baseSchema["author"] = {
"@type": "Person",
"name": frontmatter.author.name,
"jobTitle": frontmatter.author.title,
...(sameAs.length > 0 && { "sameAs": sameAs }),
};
}
if (frontmatter.image) {
baseSchema["image"] = frontmatter.image;
}
if (frontmatter.schema?.wordCount) {
baseSchema["wordCount"] = frontmatter.schema.wordCount;
}
return baseSchema;
}
14.7 MD/MDX AI Search Checklist
- [ ] Frontmatter: Title, description, date, lastmod, author with credentials
- [ ] Structure: Single H1, logical heading hierarchy, direct answers first
- [ ] Schema: JSON-LD in layout or per-page (Article, FAQPage, HowTo)
- [ ] FAQ sections: Use
<details>/<summary>with FAQPage schema - [ ] Tables: For comparisons (AI extracts structured data)
- [ ] Lists: Bullet points and numbered steps
- [ ] Last modified: Visible and in frontmatter
- [ ] Author bio: Name, credentials, social links
- [ ] Raw view: Optional
.mdor?raw=trueendpoint - [ ] Images: Alt text, proper dimensions, WebP format
- [ ] llms.txt: LLM-friendly site index (see Section 15)
15. llms.txt - LLM Site Index
The llms.txt standard provides a structured, machine-readable file to help LLMs understand and navigate your website content efficiently.
Note: As of late 2025, adoption by major AI companies is still limited, but implementing
llms.txt is low-effort and future-proofs your site for AI discovery.
15.1 What is llms.txt?
Similar to robots.txt for crawlers, llms.txt is a Markdown file at your site root that:
- Provides a concise index of key documentation/pages
- Includes descriptions to help LLMs understand content purpose
- Enables AI tools to find relevant content without parsing your entire site
- Supports an optional llms-full.txt with complete documentation
15.2 Basic llms.txt Format
# Your Company Name
> Brief one-sentence description of your site/product.
Additional context about the site, target audience, and how to use this index.
## Documentation
- [Getting Started](/docs/getting-started): Quick introduction for new users
- [API Reference](/docs/api): Complete API documentation with examples
- [Configuration Guide](/docs/configuration): Setup and configuration options
## Tutorials
- [Building Your First App](/tutorials/first-app): Step-by-step beginner guide
- [Advanced Patterns](/tutorials/advanced): In-depth exploration of features
## Optional
- [About Us](/about): Company background and team
- [Blog](/blog): Latest news and articles
- [Changelog](/changelog): Version history and updates
Key rules:
- Single H1 (#) with site/project name
- Blockquote (>) with brief description
- H2 sections (##) for content groups
- Links formatted as [Title](URL): Description
- ## Optional section for content LLMs can skip
15.3 llms-full.txt - Complete Documentation
For sites with extensive documentation, provide a llms-full.txt containing your entire documentation in a single Markdown file:
# Your Company Documentation
> Complete documentation for Your Company's platform.
---
## Getting Started
[Full content of getting started page...]
---
## API Reference
### Authentication
[Full API auth documentation...]
### Endpoints
[Full API endpoints documentation...]
---
## Configuration
[Full configuration documentation...]
Use cases:
- AI coding assistants need full API context
- Complex integrations require complete documentation
- Technical support AI needs comprehensive knowledge base
15.4 TYPO3 Implementation
TYPO3 has a dedicated extension for llms.txt generation:
# Install the extension (TYPO3 v13+)
ddev composer require web-vision/ai-llms-txt
Site Configuration
# config/sites/main/config.yaml
imports:
- resource: 'EXT:ai_llms_txt/Configuration/Routes/RouterEnhancer.yaml'
TypoScript Configuration
# Include extension TypoScript
@import 'EXT:ai_llms_txt/Configuration/TypoScript/setup.typoscript'
# Custom configuration
plugin.tx_aillmstxt {
settings {
# Pages to include (comma-separated UIDs or "auto")
includePages = auto
# Exclude specific pages
excludePages = 1,2,3
# Include page types
includeDoktypes = 1,4
# Maximum depth
maxDepth = 3
}
}
Manual llms.txt via Static Route
For full control, create a static route:
# config/sites/main/config.yaml
routes:
- route: llms.txt
type: staticText
content: |
# Your TYPO3 Site
> Enterprise content management and digital experience platform.
## Main Sections
- [Home](https://example.com/): Main landing page
- [Products](https://example.com/products): Our product catalog
- [Documentation](https://example.com/docs): Technical documentation
- [Blog](https://example.com/blog): Latest articles and news
## Optional
- [About Us](https://example.com/about): Company information
- [Contact](https://example.com/contact): Get in touch
15.5 Next.js Implementation
Static File (Simple)
<!-- public/llms.txt -->
# Your Next.js App
> Modern web application built with Next.js.
## Pages
- [Home](/): Main landing page
- [Documentation](/docs): Technical docs
- [Blog](/blog): Latest articles
Dynamic Generation (App Router)
// app/llms.txt/route.ts
import { getDocPages, getBlogPosts } from '@/lib/content';
export async function GET() {
const docs = await getDocPages();
const posts = await getBlogPosts();
const content = `# Your Site Name
> Brief description of your site.
## Documentation
${docs.map(doc => `- [${doc.title}](/docs/${doc.slug}): ${doc.description}`).join('\n')}
## Blog
${posts.slice(0, 10).map(post => `- [${post.title}](/blog/${post.slug}): ${post.excerpt}`).join('\n')}
## Optional
- [About](/about): About us
- [Contact](/contact): Get in touch
`;
return new Response(content, {
headers: {
'Content-Type': 'text/plain; charset=utf-8',
'Cache-Control': 'public, max-age=3600, must-revalidate',
},
});
}
llms-full.txt Generation
// app/llms-full.txt/route.ts
import { getDocPages } from '@/lib/content';
import fs from 'fs';
import path from 'path';
export async function GET() {
const docs = await getDocPages();
let fullContent = `# Complete Documentation
> Full documentation for Your Site.
`;
for (const doc of docs) {
const mdxPath = path.join(process.cwd(), 'content/docs', `${doc.slug}.mdx`);
try {
const content = fs.readFileSync(mdxPath, 'utf8');
// Remove frontmatter
const cleanContent = content.replace(/^---[\s\S]*?---\n/, '');
fullContent += `---\n\n## ${doc.title}\n\n${cleanContent}\n\n`;
} catch {
// Skip if file not found
}
}
return new Response(fullContent, {
headers: {
'Content-Type': 'text/plain; charset=utf-8',
'Cache-Control': 'public, max-age=3600, must-revalidate',
},
});
}
15.6 Astro Implementation
Using Integration
npm install @waldheimdev/astro-ai-llms-txt
// astro.config.mjs
import llmsTxt from '@waldheimdev/astro-ai-llms-txt';
export default {
integrations: [
llmsTxt({
projectName: 'Your Project',
description: 'Your project description.',
site: 'https://your-domain.com',
}),
],
};
Manual API Route
// src/pages/llms.txt.ts
import { getCollection } from 'astro:content';
import type { APIRoute } from 'astro';
export const GET: APIRoute = async () => {
const docs = await getCollection('docs');
const blog = await getCollection('blog');
const content = `# Your Astro Site
> Static site built with Astro.
## Documentation
${docs.map(doc => `- [${doc.data.title}](/docs/${doc.slug}): ${doc.data.description}`).join('\n')}
## Blog
${blog.slice(0, 10).map(post => `- [${post.data.title}](/blog/${post.slug}): ${post.data.excerpt}`).join('\n')}
`;
return new Response(content, {
headers: { 'Content-Type': 'text/plain; charset=utf-8' },
});
};
15.7 llms.txt Best Practices
| Aspect | Recommendation |
|---|---|
| File size | Keep under 50KB for efficient parsing |
| Descriptions | Brief, informative (not marketing copy) |
| Links | Use absolute URLs for external consumption |
| Updates | Regenerate on content changes |
| Sections | Group logically (Docs, API, Tutorials, Optional) |
| Optional section | Mark non-essential content LLMs can skip |
15.8 llms.txt Checklist
- [ ] llms.txt at site root with structured index
- [ ] H1 heading with site/project name
- [ ] Blockquote summary describing the site
- [ ] Organized sections (Docs, API, Blog, Optional)
- [ ] Link descriptions for each URL
- [ ] llms-full.txt for documentation-heavy sites (optional)
- [ ] Cache headers set appropriately (1 hour recommended)
- [ ] UTF-8 encoding with text/plain content type
Resources & References
Official Documentation
- Google AI Overviews Guidelines
- Schema.org Full Hierarchy
- OpenAI GPTBot Documentation
- llms.txt Specification
- TYPO3 EXT:ai_llms_txt Documentation
Industry Resources
Monitoring Tools
Credits & Attribution
This skill synthesizes best practices from industry research by Microsoft Advertising,
Semrush, Ahrefs, and the broader SEO community's work on generative engine optimization.
Key sources:
- Microsoft Advertising: "From Discovery to Influence: A Guide to AEO and GEO"
- Semrush research on AI search content optimization
- Ahrefs analysis of AI impact on SEO
Created by webconsulting.at for the Claude Cursor Skills collection.
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.