fast-agent-ai

agent-card-hooks

1
0
# Install this skill:
npx skills add fast-agent-ai/skills --skill "agent-card-hooks"

Install specific skill from multi-skill repository

# Description

Guide for implementing fast-agent hooks. Use when adding hook functions to agent cards or Python code for tasks like history compaction, saving sessions, modifying tool calls, or managing agent lifecycle.

# SKILL.md


name: agent-card-hooks
description: Guide for implementing fast-agent hooks. Use when adding hook functions to agent cards or Python code for tasks like history compaction, saving sessions, modifying tool calls, or managing agent lifecycle.


Implement agent hooks

Hooks let you intercept and customize agent behavior at specific points in the
tool loop (per-turn) or agent lifecycle (start/shutdown).

Audience: Developers adding custom hook logic to fast-agent agents.

Quick workflow

  1. Identify which hook points you need (tool loop vs lifecycle).
  2. Implement async hook functions with the correct context type.
  3. Wire hooks via agent card YAML or Python class assignment.
  4. Test hooks with the smoke test script or real agents. You may need the User to assist with this step.

Hook points

Tool loop hooks

Run during the LLM/tool execution cycle. Configure via tool_hooks: in agent cards
or ToolRunnerHooks in Python.

Hook When it fires
before_llm_call Before each LLM call (receives pending messages)
after_llm_call After each assistant response
before_tool_call Before executing tool calls
after_tool_call After tool results are received
after_turn_complete Once after the turn finishes (stop reason โ‰  TOOL_USE)

Lifecycle hooks

Run when agent instances start or shut down. Configure via lifecycle_hooks: in
agent cards or AgentLifecycleHooks in Python.

Hook When it fires
on_start During agent initialization
on_shutdown During agent shutdown

Built-in shortcut

Set trim_tool_history: true in agent cards to apply the history trimmer after each turn.

Approach 1: Agent card YAML

Reference hook functions using module.py:function specs. Paths are resolved
relative to the agent card location.

tool_hooks:
  before_llm_call: hooks.py:log_pending_messages
  after_turn_complete: hooks.py:save_after_turn

lifecycle_hooks:
  on_start: hooks.py:start_service
  on_shutdown: hooks.py:stop_service

Hook functions must be async def with the appropriate context type:

# hooks.py
from fast_agent.hooks import HookContext, AgentLifecycleContext

async def save_after_turn(ctx: HookContext) -> None:
    if ctx.is_turn_complete:
        # Access and modify history
        history = ctx.message_history
        ctx.load_message_history(history[-10:])

async def start_service(ctx: AgentLifecycleContext) -> None:
    # Store state on the agent instance
    ctx.agent._service_handle = "started"

Approach 2: Python classes

For programmatic control, assign hooks directly to agent instances or use the
dataclass constructors.

from fast_agent.agents.tool_runner import ToolRunnerHooks
from fast_agent.hooks.lifecycle_hook_loader import AgentLifecycleHooks

# Tool loop hooks
async def my_after_turn(runner, message):
    print(f"Turn complete: {message.stop_reason}")

hooks = ToolRunnerHooks(after_turn_complete=my_after_turn)
agent.tool_runner_hooks = hooks

# Lifecycle hooks
async def my_on_start(ctx):
    print(f"Agent {ctx.agent_name} starting")

lifecycle = AgentLifecycleHooks(on_start=my_on_start)

Note: Python class hooks use raw signatures (runner, message) while agent card
hooks receive a HookContext wrapper.

Hook context objects

HookContext (tool hooks via agent cards)

from fast_agent.hooks import HookContext

async def my_hook(ctx: HookContext) -> None:
    ctx.agent_name      # Agent name
    ctx.iteration       # Current tool loop iteration
    ctx.is_turn_complete # True if stop_reason != TOOL_USE
    ctx.message_history # Current message history
    ctx.message         # The message that triggered this hook
    ctx.hook_type       # "before_llm_call", "after_turn_complete", etc.
    ctx.usage           # Token usage stats (UsageAccumulator | None)
    ctx.context         # Agent's Context object if available
    ctx.get_agent(name) # Look up another agent by name
    ctx.load_message_history(messages)  # Replace history

AgentLifecycleContext (lifecycle hooks)

from fast_agent.hooks import AgentLifecycleContext

async def my_hook(ctx: AgentLifecycleContext) -> None:
    ctx.agent_name      # Agent name
    ctx.agent           # The agent instance
    ctx.context         # Context object (or None)
    ctx.config          # AgentConfig
    ctx.hook_type       # "on_start" or "on_shutdown"
    ctx.has_context     # True if context is available
    ctx.get_agent(name) # Look up another agent by name

Hook output helpers

Use these to render consistent status messages to users:

from fast_agent.hooks import show_hook_message, show_hook_failure

async def my_hook(ctx: HookContext) -> None:
    # Show status message (yellow prefix)
    show_hook_message(
        ctx,
        "trimmed 6 messages",
        hook_name="after_turn_complete",
        hook_kind="tool",
    )

    # Show failure (red prefix) - typically before re-raising
    try:
        ...
    except Exception as exc:
        show_hook_failure(ctx, hook_name="my_hook", hook_kind="tool", error=exc)
        raise

Built-in hooks

Hook Import Purpose
trim_tool_loop_history fast_agent.hooks Compact tool call/result pairs
save_session_history fast_agent.hooks Save history to session storage

Using built-in hooks

The built-ins can be wired directly in agent cards (typically as
after_turn_complete hooks) or via the trim_tool_history: true shortcut.

Trim tool loops (explicit hook):

tool_hooks:
  after_turn_complete: fast_agent.hooks.history_trimmer:trim_tool_loop_history

Trim tool loops (shortcut):

trim_tool_history: true

Save session history:

tool_hooks:
  after_turn_complete: fast_agent.hooks:save_session_history

Sharing state between hooks

Agent attribute storage (recommended):

async def on_start(ctx: AgentLifecycleContext) -> None:
    ctx.agent._my_state = {"started": True}

async def after_turn(ctx: HookContext) -> None:
    state = getattr(ctx.agent, "_my_state", {})

Cross-agent access:

async def my_hook(ctx: HookContext) -> None:
    companion = ctx.get_agent("helper-agent")
    if companion:
        # Access companion agent
        ...

Example: translate the assistant response via a helper agent (the helper must be
configured in the same app, e.g. agents: [translator] in the card):

from mcp.types import TextContent
from fast_agent.hooks import show_hook_message

async def translate_after_turn(ctx: HookContext) -> None:
    if not ctx.is_turn_complete:
        return

    translator = ctx.get_agent("translator")
    if translator is None:
        return

    history = ctx.message_history
    for message in reversed(history):
        if message.role != "assistant":
            continue
        text = message.all_text().strip()
        if not text:
            return

        translated = await translator.send(
            "Translate the following assistant response into French. "
            "Reply with the translation only.\n\n"
            f"{text}"
        )
        message.content = [TextContent(type="text", text=translated)]
        ctx.load_message_history(list(history))
        show_hook_message(
            ctx,
            "translated assistant response to French",
            hook_name="translate",
            hook_kind="extension",
        )
        return

Related example files:

  • assets/examples/translate_hook.py
  • assets/examples/hook_translate_agent.md
  • assets/examples/translator_agent.md

Testing hooks

Smoke test script

Use the bundled smoke test to run a hook against saved history without a full agent:

python scripts/hook_smoke_test.py \
  --hook path/to/hooks.py:after_turn_complete \
  --history ./history.json \
  --hook-type after_turn_complete \
  --output ./history-modified.json

Options:

  • --hook (required): Hook spec in module.py:function format
  • --history (required): Path to history file (JSON or delimited)
  • --hook-type: Hook type label for HookContext (default: after_turn_complete)
  • --output: Save modified history to this path
  • --agent-name: Agent name for the test context
  • --base-path: Resolve relative hook paths from this directory

Integration testing

For full integration tests:

  • Use real agents with PassthroughLLM subclasses to drive tool calls
  • Use tmp_path for files written during tests
  • See tests/integration/tool_hooks/ and tests/integration/agent_hooks/

Run checks after changes:

uv run scripts/lint.py --fix
uv run scripts/typecheck.py
pytest tests/unit

Bundled examples

Example hook implementations are provided in assets/examples/:

File Hook type What it demonstrates
cache_rate_display.py after_turn_complete Rich text output with show_hook_message
append_context.py before_llm_call Appending messages via ctx.runner.append_messages()
save_history.py after_turn_complete Saving history to timestamped files
fix_tool_calls.py before_tool_call Modifying tool calls before execution

Copy and adapt these for your use case.

References

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.