Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add front-depiction/claude-setup --skill "effect-ai-prompt"
Install specific skill from multi-skill repository
# Description
Build prompts for Effect AI using messages, parts, and composition operators. Covers the complete Prompt API for constructing, merging, and manipulating conversations with language models.
# SKILL.md
name: effect-ai-prompt
description: Build prompts for Effect AI using messages, parts, and composition operators. Covers the complete Prompt API for constructing, merging, and manipulating conversations with language models.
Effect AI Prompt Construction
Master the @effect/ai Prompt API for building type-safe conversations with language models.
Import Patterns
CRITICAL: Always use namespace imports:
import * as Prompt from "@effect/ai/Prompt"
import * as Response from "@effect/ai/Response"
import { pipe } from "effect"
When to Use This Skill
- Constructing messages for language model requests
- Building multi-turn conversation history
- Adding system instructions to prompts
- Integrating tool calls and results into conversations
- Converting streaming responses to prompt history
- Managing file/image attachments in messages
- Implementing custom chat interfaces
Conceptual Model
-- Message hierarchy
type Message = SystemMessage | UserMessage | AssistantMessage | ToolMessage
type Part = TextPart | ReasoningPart | FilePart | ToolCallPart | ToolResultPart
-- Composition
Prompt.make :: RawInput → Prompt
Prompt.merge :: (Prompt, RawInput) → Prompt
Prompt.setSystem :: (Prompt, String) → Prompt
-- History transformation
fromResponseParts :: ReadonlyArray<Response.Part> → Prompt
Message Types
Each message has role and content. Content is an array of Part objects.
System Messages
import * as Prompt from "@effect/ai/Prompt"
// String content only
const system = Prompt.makeMessage("system", {
content: "You are a helpful assistant specialized in mathematics."
})
// Shorthand constructor
const systemShorthand = Prompt.systemMessage({
content: "You are a helpful assistant specialized in mathematics."
})
// System message with options
const systemWithOptions = Prompt.makeMessage("system", {
content: "You are an expert coder.",
options: {
"anthropic": { cache_control: { type: "ephemeral" } }
}
})
User Messages
// Text-only user message
const userText = Prompt.makeMessage("user", {
content: [
Prompt.makePart("text", { text: "What is 2+2?" })
]
})
// Shorthand constructor
const userShorthand = Prompt.userMessage({
content: [
Prompt.makePart("text", { text: "What is 2+2?" })
]
})
// Multimodal user message (text + file)
const userMultimodal = Prompt.makeMessage("user", {
content: [
Prompt.makePart("text", { text: "What's in this image?" }),
Prompt.makePart("file", {
mediaType: "image/jpeg",
fileName: "photo.jpg",
data: new Uint8Array([...])
})
]
})
Assistant Messages
// Assistant response with text and tool call
const assistant = Prompt.makeMessage("assistant", {
content: [
Prompt.makePart("reasoning", {
text: "I need to check the weather using the tool."
}),
Prompt.makePart("tool-call", {
id: "call_123",
name: "get_weather",
params: { city: "Paris" },
providerExecuted: false
}),
Prompt.makePart("text", {
text: "The weather in Paris is sunny, 22°C."
})
]
})
// Shorthand constructor
const assistantShorthand = Prompt.assistantMessage({
content: [
Prompt.makePart("text", {
text: "The weather in Paris is sunny, 22°C."
})
]
})
Tool Messages
// Tool execution results
const toolMessage = Prompt.makeMessage("tool", {
content: [
Prompt.makePart("tool-result", {
id: "call_123",
name: "get_weather",
isFailure: false,
result: { temperature: 22, condition: "sunny" }
})
]
})
// Shorthand constructor
const toolShorthand = Prompt.toolMessage({
content: [
Prompt.makePart("tool-result", {
id: "call_123",
name: "get_weather",
isFailure: false,
result: { temperature: 22, condition: "sunny" }
})
]
})
Part Types
Text Part
const textPart = Prompt.makePart("text", {
text: "Hello, world!"
})
Reasoning Part
const reasoningPart = Prompt.makePart("reasoning", {
text: "Let me think step by step..."
})
File Part
// From URL
const fileFromUrl = Prompt.makePart("file", {
mediaType: "image/png",
fileName: "screenshot.png",
data: new URL("https://example.com/image.png")
})
// From bytes
const fileFromBytes = Prompt.makePart("file", {
mediaType: "application/pdf",
fileName: "report.pdf",
data: new Uint8Array([1, 2, 3])
})
// From base64
const fileFromBase64 = Prompt.makePart("file", {
mediaType: "image/jpeg",
data: "..."
})
Tool Call Part
const toolCall = Prompt.makePart("tool-call", {
id: "call_abc123",
name: "calculate",
params: { expression: "2 + 2" },
providerExecuted: false
})
Tool Result Part
const toolResult = Prompt.makePart("tool-result", {
id: "call_abc123",
name: "calculate",
isFailure: false,
result: 4
})
Prompt Construction
From String
// Creates a user message with text part
const prompt = Prompt.make("Hello, how are you?")
From Messages
const prompt = Prompt.make([
{ role: "system", content: "You are helpful." },
{ role: "user", content: [{ type: "text", text: "Hi!" }] }
])
From Existing Prompt
const copy = Prompt.make(existingPrompt)
Empty Prompt
const empty = Prompt.empty
From Messages Array
// Using fromMessages constructor
const messages: ReadonlyArray<Prompt.Message> = [
Prompt.systemMessage({ content: "You are an expert." }),
Prompt.userMessage({
content: [Prompt.makePart("text", { text: "Help me." })]
})
]
const prompt = Prompt.fromMessages(messages)
// Alternative: Using make with messages array
const prompt2 = Prompt.make([
Prompt.makeMessage("system", { content: "You are an expert." }),
Prompt.makeMessage("user", {
content: [Prompt.makePart("text", { text: "Help me." })]
})
])
Prompt Composition
Merge Prompts
import { pipe } from "effect"
const systemPrompt = Prompt.make([{
role: "system",
content: "You are a coding assistant."
}])
const userPrompt = Prompt.make("Write a function")
// Data-last (pipeline)
const combined = pipe(
systemPrompt,
Prompt.merge(userPrompt)
)
// Data-first
const combined2 = Prompt.merge(systemPrompt, userPrompt)
System Message Manipulation
import { pipe } from "effect"
const prompt = Prompt.make([
{ role: "system", content: "You are helpful." },
{ role: "user", content: [{ type: "text", text: "Hi" }] }
])
// Replace system message
const replaced = pipe(
prompt,
Prompt.setSystem("You are an expert in TypeScript.")
)
// Prepend to system message
const prepended = pipe(
prompt,
Prompt.prependSystem("IMPORTANT: ")
)
// Result: "IMPORTANT: You are helpful."
// Append to system message
const appended = pipe(
prompt,
Prompt.appendSystem(" Be concise.")
)
// Result: "You are helpful. Be concise."
History Management
Convert AI Response to Prompt
import * as Response from "@effect/ai/Response"
const responseParts: ReadonlyArray<Response.AnyPart> = [
Response.makePart("text", { text: "Hello!" }),
Response.makePart("tool-call", {
id: "call_1",
name: "get_time",
params: {},
providerExecuted: false
}),
Response.makePart("tool-result", {
id: "call_1",
name: "get_time",
isFailure: false,
result: "10:30 AM",
encodedResult: "10:30 AM",
providerExecuted: false
})
]
// Converts to assistant + tool messages
const historyPrompt = Prompt.fromResponseParts(responseParts)
Typical Chat Pattern
import { Effect } from "effect"
import * as SubscriptionRef from "effect/SubscriptionRef"
import * as LanguageModel from "@effect/ai/LanguageModel"
const chat = Effect.gen(function* () {
const history = yield* SubscriptionRef.make(Prompt.empty)
function* generateText(userInput: string) {
const currentHistory = yield* SubscriptionRef.get(history)
const prompt = pipe(
currentHistory,
Prompt.merge(userInput)
)
const response = yield* LanguageModel.generateText({ prompt })
// Update history with user input + response
const newHistory = pipe(
prompt,
Prompt.merge(Prompt.fromResponseParts(response.content))
)
yield* SubscriptionRef.set(history, newHistory)
return response
}
return { generateText }
})
Usage with LanguageModel
Generate Text
import * as LanguageModel from "@effect/ai/LanguageModel"
import { Effect } from "effect"
const program = Effect.gen(function* () {
const prompt = Prompt.make([
{ role: "system", content: "You are helpful." },
{ role: "user", content: [{ type: "text", text: "Explain Effect" }] }
])
const response = yield* LanguageModel.generateText({ prompt })
return response.content
})
Stream Text
import * as LanguageModel from "@effect/ai/LanguageModel"
import { Effect, Stream } from "effect"
const program = Effect.gen(function* () {
const prompt = Prompt.make("Write a story")
yield* LanguageModel.streamText({ prompt }).pipe(
Stream.runForEach((part) =>
part.type === "text-delta"
? Effect.sync(() => process.stdout.write(part.delta))
: Effect.void
)
)
})
Generate Object
import * as LanguageModel from "@effect/ai/LanguageModel"
import { Effect, Schema } from "effect"
const Contact = Schema.Struct({
name: Schema.String,
email: Schema.String,
phone: Schema.optional(Schema.String)
})
const program = Effect.gen(function* () {
const prompt = Prompt.make(
"Extract: John Doe, [email protected], 555-1234"
)
const response = yield* LanguageModel.generateObject({
prompt,
schema: Contact
})
return response.object
})
Provider-Specific Options
// Augment options interfaces via module augmentation
declare module "@effect/ai/Prompt" {
interface TextPartOptions {
readonly anthropic?: {
readonly cache_control?: {
readonly type: "ephemeral"
}
}
}
}
// Use in parts
const cachedPart = Prompt.makePart("text", {
text: "Large document...",
options: {
anthropic: { cache_control: { type: "ephemeral" } }
}
})
// Use in messages
const cachedMessage = Prompt.makeMessage("system", {
content: "You are an expert.",
options: {
anthropic: { cache_control: { type: "ephemeral" } }
}
})
Serialization
Export/Import
import * as Schema from "effect/Schema"
import { Effect } from "effect"
const encode = Schema.encode(Prompt.Prompt)
const decode = Schema.decodeUnknown(Prompt.Prompt)
const program = Effect.gen(function* () {
const prompt = Prompt.make("Hello")
// Export to structured data
const exported = yield* encode(prompt)
// Import from structured data
const imported = yield* decode(exported)
return imported
})
JSON Serialization
import * as Schema from "effect/Schema"
import { Effect } from "effect"
const encodeJson = Schema.encode(Prompt.FromJson)
const decodeJson = Schema.decodeUnknown(Prompt.FromJson)
const program = Effect.gen(function* () {
const prompt = Prompt.make([
{ role: "system", content: "You are helpful." },
{ role: "user", content: [{ type: "text", text: "Hi" }] }
])
// To JSON
const json = yield* encodeJson(prompt)
console.log(json) // string
// From JSON
const restored = yield* decodeJson(json)
return restored
})
Common Patterns
Multi-turn Conversation
const conversation = Prompt.make([
{ role: "system", content: "You are a math tutor." },
{ role: "user", content: [{ type: "text", text: "What is 2+2?" }] },
{ role: "assistant", content: [{ type: "text", text: "2+2 equals 4." }] },
{ role: "user", content: [{ type: "text", text: "What about 3+3?" }] }
])
Dynamic System Prompt
import { pipe } from "effect"
function withSystemPrompt(content: string) {
return (prompt: Prompt.Prompt) => pipe(
prompt,
Prompt.setSystem(content)
)
}
const userPrompt = Prompt.make("Help me code")
const withContext = pipe(
userPrompt,
withSystemPrompt("You are an expert TypeScript developer.")
)
Tool Interaction History
const toolInteraction = Prompt.make([
{ role: "user", content: [{ type: "text", text: "What's the weather?" }] },
{
role: "assistant",
content: [
{ type: "tool-call", id: "1", name: "weather", params: {}, providerExecuted: false }
]
},
{
role: "tool",
content: [
{ type: "tool-result", id: "1", name: "weather", isFailure: false, result: "Sunny, 22°C" }
]
},
{
role: "assistant",
content: [{ type: "text", text: "It's sunny and 22°C." }]
}
])
Type Guards
import * as Prompt from "@effect/ai/Prompt"
declare const value: unknown
if (Prompt.isPrompt(value)) {
// value: Prompt.Prompt
console.log(value.content)
}
if (Prompt.isMessage(value)) {
// value: Prompt.Message
console.log(value.role)
}
if (Prompt.isPart(value)) {
// value: Prompt.Part
console.log(value.type)
}
Anti-Patterns
// DON'T: Manually construct messages without constructors
const bad = {
role: "user",
content: [{ type: "text", text: "Hello" }]
} as Prompt.UserMessage
// DO: Use constructors
const good = Prompt.makeMessage("user", {
content: [Prompt.makePart("text", { text: "Hello" })]
})
// DO: Use shorthand constructors
const better = Prompt.userMessage({
content: [Prompt.makePart("text", { text: "Hello" })]
})
// DON'T: Mutate prompt content
const prompt = Prompt.make("Hi")
prompt.content.push(someMessage) // Error: readonly
// DO: Use merge for composition
const extended = Prompt.merge(prompt, "Additional message")
// DON'T: Manually filter response parts
const filtered = responseParts.filter(p => p.type === "text")
// DO: Use fromResponseParts (handles streaming deltas, tool results, etc.)
const historyPrompt = Prompt.fromResponseParts(responseParts)
Related Skills
- effect-ai-language-model - Using prompts with LanguageModel service
- effect-ai-streaming - Converting streaming responses to prompt history
- effect-ai-tool - Integrating tool call/result messages
Quality Checklist
- [ ] Messages use
Prompt.makeMessageor shorthand constructors - [ ] Parts use
Prompt.makePartconstructors - [ ] System messages managed with
setSystem/prependSystem/appendSystem - [ ] History updates use
Prompt.fromResponseParts - [ ] Prompt composition uses
Prompt.merge(not mutation) - [ ] Namespace imports for all @effect/ai modules
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.