jaykaycodes

codebase-analysis

1
0
# Install this skill:
npx skills add jaykaycodes/codebase-analyzer-mcp --skill "codebase-analysis"

Install specific skill from multi-skill repository

# Description

This skill teaches how to effectively analyze codebases using the codebase-analyzer MCP tools. Use when exploring new repositories, understanding architecture, detecting patterns, or tracing data flow.

# SKILL.md


name: codebase-analysis
description: This skill teaches how to effectively analyze codebases using the codebase-analyzer MCP tools. Use when exploring new repositories, understanding architecture, detecting patterns, or tracing data flow.


Codebase Analysis

Quick Start

Analyze any codebase with progressive disclosure:

mcp__codebase-analyzer__analyze_repo(source: ".", depth: "standard")

Analysis Depths

Depth Speed Cost Use When
surface Fast Free Quick overview, file structure
standard Medium Low Understanding architecture, symbols
deep Slow High Full semantic analysis with AI

Rule of thumb: Start with surface, upgrade if needed.

Core Tools

1. Analyze Repository

mcp__codebase-analyzer__analyze_repo({
  source: ".",                    // Local path or GitHub URL
  depth: "standard",              // surface | standard | deep
  focus: ["src/api"],             // Optional: focus areas
  exclude: ["node_modules"],      // Optional: exclude patterns
  tokenBudget: 800000,            // Optional: max tokens
  includeSemantics: false         // Optional: enable AI analysis
})

Returns:
- repositoryMap: Files, languages, structure
- summary: Architecture type, patterns, complexity
- sections: Expandable areas for drill-down
- forAgent: Quick summary and next steps

2. Expand Section

After analysis, drill into specific sections:

mcp__codebase-analyzer__expand_section({
  analysisId: "analysis_xxx",     // From analyze_repo result
  sectionId: "module_src_api",    // Section ID to expand
  depth: "detail"                 // detail | full
})

3. Find Patterns

Detect design and architecture patterns:

mcp__codebase-analyzer__find_patterns({
  source: ".",
  patternTypes: ["singleton", "factory", "repository"]  // Optional filter
})

Available patterns: singleton, factory, observer, strategy, decorator, adapter, facade, repository, dependency-injection, event-driven, pub-sub, middleware, mvc, mvvm, clean-architecture, hexagonal, cqrs, saga

4. Trace Dataflow

Follow data through the system:

mcp__codebase-analyzer__trace_dataflow({
  source: ".",
  from: "user login",             // Entry point
  to: "database"                  // Optional destination
})

5. Get Capabilities

Check what's available:

mcp__codebase-analyzer__get_analysis_capabilities()

Workflow Patterns

New Codebase Orientation

  1. Run surface analysis
  2. Review repository map and entry points
  3. Expand interesting modules
  4. Run pattern detection if architecture unclear

Security Review

  1. Trace dataflow from external inputs
  2. Check for anti-patterns
  3. Map trust boundaries

Understanding Legacy Code

  1. Deep analysis with semantics
  2. Pattern detection for architecture
  3. Expand each major module

Guidelines

DO:
- Start cheap (surface), escalate if needed
- Use focus to limit scope for large repos
- Check expansionCost before expanding sections
- Use forAgent.suggestedNextSteps

DON'T:
- Run deep analysis on first request
- Ignore token budget warnings
- Expand all sections at once

References

For detailed API documentation, see references/api-reference.md.

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.