Manage Apple Reminders via the `remindctl` CLI on macOS (list, add, edit, complete, delete)....
npx skills add jgarrison929/openclaw-skills --skill "database-operations"
Install specific skill from multi-skill repository
# Description
Use when designing database schemas, writing migrations, optimizing SQL queries, fixing N+1 problems, creating indexes, setting up PostgreSQL, configuring EF Core, implementing caching, partitioning tables, or any database performance question.
# SKILL.md
name: database-operations
version: 1.0.0
description: Use when designing database schemas, writing migrations, optimizing SQL queries, fixing N+1 problems, creating indexes, setting up PostgreSQL, configuring EF Core, implementing caching, partitioning tables, or any database performance question.
triggers:
- database
- schema
- migration
- SQL
- query optimization
- index
- PostgreSQL
- Postgres
- N+1
- slow query
- EXPLAIN
- partitioning
- caching
- Redis
- connection pool
- EF Core migration
- database design
role: specialist
scope: implementation
output-format: code
Database Operations
Comprehensive database design, migration, and optimization specialist. Adapted from buildwithclaude by Dave Poon (MIT).
Role Definition
You are a database optimization expert specializing in PostgreSQL, query performance, schema design, and EF Core migrations. You measure first, optimize second, and always plan rollback procedures.
Core Principles
- Measure first β always use
EXPLAIN ANALYZEbefore optimizing - Index strategically β based on query patterns, not every column
- Denormalize selectively β only when justified by read patterns
- Cache expensive computations β Redis/materialized views for hot paths
- Plan rollback β every migration has a reverse migration
- Zero-downtime migrations β additive changes first, destructive later
Schema Design Patterns
User Management
CREATE TYPE user_status AS ENUM ('active', 'inactive', 'suspended', 'pending');
CREATE TABLE users (
id BIGSERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE NOT NULL,
username VARCHAR(50) UNIQUE NOT NULL,
password_hash VARCHAR(255) NOT NULL,
first_name VARCHAR(100) NOT NULL,
last_name VARCHAR(100) NOT NULL,
status user_status DEFAULT 'active',
email_verified BOOLEAN DEFAULT FALSE,
created_at TIMESTAMPTZ DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMPTZ DEFAULT CURRENT_TIMESTAMP,
deleted_at TIMESTAMPTZ, -- Soft delete
CONSTRAINT users_email_format CHECK (email ~* '^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}$'),
CONSTRAINT users_names_not_empty CHECK (LENGTH(TRIM(first_name)) > 0 AND LENGTH(TRIM(last_name)) > 0)
);
-- Strategic indexes
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_status ON users(status) WHERE status != 'active';
CREATE INDEX idx_users_created_at ON users(created_at);
CREATE INDEX idx_users_deleted_at ON users(deleted_at) WHERE deleted_at IS NULL;
Audit Trail
CREATE TYPE audit_operation AS ENUM ('INSERT', 'UPDATE', 'DELETE');
CREATE TABLE audit_log (
id BIGSERIAL PRIMARY KEY,
table_name VARCHAR(255) NOT NULL,
record_id BIGINT NOT NULL,
operation audit_operation NOT NULL,
old_values JSONB,
new_values JSONB,
changed_fields TEXT[],
user_id BIGINT REFERENCES users(id),
created_at TIMESTAMPTZ DEFAULT CURRENT_TIMESTAMP
);
CREATE INDEX idx_audit_table_record ON audit_log(table_name, record_id);
CREATE INDEX idx_audit_user_time ON audit_log(user_id, created_at);
-- Trigger function
CREATE OR REPLACE FUNCTION audit_trigger_function()
RETURNS TRIGGER AS $$
BEGIN
IF TG_OP = 'DELETE' THEN
INSERT INTO audit_log (table_name, record_id, operation, old_values)
VALUES (TG_TABLE_NAME, OLD.id, 'DELETE', to_jsonb(OLD));
RETURN OLD;
ELSIF TG_OP = 'UPDATE' THEN
INSERT INTO audit_log (table_name, record_id, operation, old_values, new_values)
VALUES (TG_TABLE_NAME, NEW.id, 'UPDATE', to_jsonb(OLD), to_jsonb(NEW));
RETURN NEW;
ELSIF TG_OP = 'INSERT' THEN
INSERT INTO audit_log (table_name, record_id, operation, new_values)
VALUES (TG_TABLE_NAME, NEW.id, 'INSERT', to_jsonb(NEW));
RETURN NEW;
END IF;
END;
$$ LANGUAGE plpgsql;
-- Apply to any table
CREATE TRIGGER audit_users
AFTER INSERT OR UPDATE OR DELETE ON users
FOR EACH ROW EXECUTE FUNCTION audit_trigger_function();
Soft Delete Pattern
-- Query filter view
CREATE VIEW active_users AS SELECT * FROM users WHERE deleted_at IS NULL;
-- Soft delete function
CREATE OR REPLACE FUNCTION soft_delete(p_table TEXT, p_id BIGINT)
RETURNS VOID AS $$
BEGIN
EXECUTE format('UPDATE %I SET deleted_at = CURRENT_TIMESTAMP WHERE id = $1 AND deleted_at IS NULL', p_table)
USING p_id;
END;
$$ LANGUAGE plpgsql;
Full-Text Search
ALTER TABLE products ADD COLUMN search_vector tsvector
GENERATED ALWAYS AS (
to_tsvector('english', COALESCE(name, '') || ' ' || COALESCE(description, '') || ' ' || COALESCE(sku, ''))
) STORED;
CREATE INDEX idx_products_search ON products USING gin(search_vector);
-- Query
SELECT * FROM products
WHERE search_vector @@ to_tsquery('english', 'laptop & gaming');
Query Optimization
Analyze Before Optimizing
-- Always start here
EXPLAIN (ANALYZE, BUFFERS, FORMAT TEXT)
SELECT u.id, u.name, COUNT(o.id) as order_count
FROM users u
LEFT JOIN orders o ON u.id = o.user_id
WHERE u.created_at > '2024-01-01'
GROUP BY u.id, u.name
ORDER BY order_count DESC;
Indexing Strategy
-- Single column for exact lookups
CREATE INDEX CONCURRENTLY idx_users_email ON users(email);
-- Composite for multi-column queries (order matters!)
CREATE INDEX CONCURRENTLY idx_orders_user_status ON orders(user_id, status, created_at);
-- Partial index for filtered queries
CREATE INDEX CONCURRENTLY idx_products_low_stock
ON products(inventory_quantity)
WHERE inventory_tracking = true AND inventory_quantity <= 5;
-- Covering index (includes extra columns to avoid table lookup)
CREATE INDEX CONCURRENTLY idx_orders_covering
ON orders(user_id, status) INCLUDE (total, created_at);
-- GIN index for JSONB
CREATE INDEX CONCURRENTLY idx_products_attrs ON products USING gin(attributes);
-- Expression index
CREATE INDEX CONCURRENTLY idx_users_email_lower ON users(lower(email));
Find Unused Indexes
SELECT
schemaname, tablename, indexname,
idx_scan as scans,
pg_size_pretty(pg_relation_size(indexrelid)) as size
FROM pg_stat_user_indexes
WHERE idx_scan = 0
ORDER BY pg_relation_size(indexrelid) DESC;
Find Missing Indexes (Slow Queries)
-- Enable pg_stat_statements first
SELECT query, calls, total_exec_time, mean_exec_time, rows
FROM pg_stat_statements
WHERE mean_exec_time > 100 -- ms
ORDER BY total_exec_time DESC
LIMIT 20;
N+1 Query Detection
-- Look for repeated similar queries in pg_stat_statements
SELECT query, calls, mean_exec_time
FROM pg_stat_statements
WHERE calls > 100 AND query LIKE '%WHERE%id = $1%'
ORDER BY calls DESC;
Migration Patterns
Safe Column Addition
-- +migrate Up
-- Always use CONCURRENTLY for indexes in production
ALTER TABLE users ADD COLUMN phone VARCHAR(20);
CREATE INDEX CONCURRENTLY idx_users_phone ON users(phone) WHERE phone IS NOT NULL;
-- +migrate Down
DROP INDEX IF EXISTS idx_users_phone;
ALTER TABLE users DROP COLUMN IF EXISTS phone;
Safe Column Rename (Zero-Downtime)
-- Step 1: Add new column
ALTER TABLE users ADD COLUMN display_name VARCHAR(100);
UPDATE users SET display_name = name;
ALTER TABLE users ALTER COLUMN display_name SET NOT NULL;
-- Step 2: Deploy code that writes to both columns
-- Step 3: Deploy code that reads from new column
-- Step 4: Drop old column
ALTER TABLE users DROP COLUMN name;
Table Partitioning
-- Create partitioned table
CREATE TABLE orders (
id BIGSERIAL,
user_id BIGINT NOT NULL,
total DECIMAL(10,2),
created_at TIMESTAMPTZ NOT NULL,
PRIMARY KEY (id, created_at)
) PARTITION BY RANGE (created_at);
-- Monthly partitions
CREATE TABLE orders_2024_01 PARTITION OF orders
FOR VALUES FROM ('2024-01-01') TO ('2024-02-01');
CREATE TABLE orders_2024_02 PARTITION OF orders
FOR VALUES FROM ('2024-02-01') TO ('2024-03-01');
-- Auto-create partitions
CREATE OR REPLACE FUNCTION create_monthly_partition(p_table TEXT, p_date DATE)
RETURNS VOID AS $$
DECLARE
partition_name TEXT := p_table || '_' || to_char(p_date, 'YYYY_MM');
next_date DATE := p_date + INTERVAL '1 month';
BEGIN
EXECUTE format(
'CREATE TABLE IF NOT EXISTS %I PARTITION OF %I FOR VALUES FROM (%L) TO (%L)',
partition_name, p_table, p_date, next_date
);
END;
$$ LANGUAGE plpgsql;
EF Core Migrations (.NET)
Create and Apply
# Add migration
dotnet ef migrations add AddPhoneToUsers -p src/Infrastructure -s src/Api
# Apply
dotnet ef database update -p src/Infrastructure -s src/Api
# Generate idempotent SQL script for production
dotnet ef migrations script -p src/Infrastructure -s src/Api -o migration.sql --idempotent
# Rollback
dotnet ef database update PreviousMigrationName -p src/Infrastructure -s src/Api
EF Core Configuration Best Practices
// Use AsNoTracking for read queries
var users = await _db.Users
.AsNoTracking()
.Where(u => u.Status == UserStatus.Active)
.Select(u => new UserDto { Id = u.Id, Name = u.Name })
.ToListAsync(ct);
// Avoid N+1 with Include
var orders = await _db.Orders
.Include(o => o.Items)
.ThenInclude(i => i.Product)
.Where(o => o.UserId == userId)
.ToListAsync(ct);
// Better: Projection
var orders = await _db.Orders
.Where(o => o.UserId == userId)
.Select(o => new OrderDto
{
Id = o.Id,
Total = o.Total,
Items = o.Items.Select(i => new OrderItemDto
{
ProductName = i.Product.Name,
Quantity = i.Quantity,
}).ToList(),
})
.ToListAsync(ct);
Caching Strategy
Redis Query Cache
import Redis from 'ioredis'
const redis = new Redis(process.env.REDIS_URL)
async function cachedQuery<T>(
key: string,
queryFn: () => Promise<T>,
ttlSeconds: number = 300
): Promise<T> {
const cached = await redis.get(key)
if (cached) return JSON.parse(cached)
const result = await queryFn()
await redis.setex(key, ttlSeconds, JSON.stringify(result))
return result
}
// Usage
const products = await cachedQuery(
`products:category:${categoryId}:page:${page}`,
() => db.product.findMany({ where: { categoryId }, skip, take }),
300 // 5 minutes
)
// Invalidation
async function invalidateProductCache(categoryId: string) {
const keys = await redis.keys(`products:category:${categoryId}:*`)
if (keys.length) await redis.del(...keys)
}
Materialized Views
CREATE MATERIALIZED VIEW monthly_sales AS
SELECT
DATE_TRUNC('month', created_at) as month,
category_id,
COUNT(*) as order_count,
SUM(total) as revenue,
AVG(total) as avg_order_value
FROM orders
WHERE created_at >= DATE_TRUNC('year', CURRENT_DATE)
GROUP BY 1, 2;
CREATE UNIQUE INDEX idx_monthly_sales ON monthly_sales(month, category_id);
-- Refresh (can be scheduled via pg_cron)
REFRESH MATERIALIZED VIEW CONCURRENTLY monthly_sales;
Connection Pool Configuration
Node.js (pg)
import { Pool } from 'pg'
const pool = new Pool({
max: 20, // Max connections
idleTimeoutMillis: 30000, // Close idle connections after 30s
connectionTimeoutMillis: 2000, // Fail fast if can't connect in 2s
maxUses: 7500, // Refresh connection after N uses
})
// Monitor pool health
setInterval(() => {
console.log({
total: pool.totalCount,
idle: pool.idleCount,
waiting: pool.waitingCount,
})
}, 60000)
Monitoring Queries
Active Connections
SELECT count(*), state
FROM pg_stat_activity
WHERE datname = current_database()
GROUP BY state;
Long-Running Queries
SELECT pid, now() - query_start AS duration, query, state
FROM pg_stat_activity
WHERE (now() - query_start) > interval '5 minutes'
AND state = 'active';
Table Sizes
SELECT
relname AS table,
pg_size_pretty(pg_total_relation_size(relid)) AS total_size,
pg_size_pretty(pg_relation_size(relid)) AS data_size,
pg_size_pretty(pg_total_relation_size(relid) - pg_relation_size(relid)) AS index_size
FROM pg_catalog.pg_statio_user_tables
ORDER BY pg_total_relation_size(relid) DESC
LIMIT 20;
Table Bloat
SELECT
tablename,
pg_size_pretty(pg_total_relation_size(tablename::regclass)) as size,
n_dead_tup,
n_live_tup,
CASE WHEN n_live_tup > 0
THEN round(n_dead_tup::numeric / n_live_tup, 2)
ELSE 0
END as dead_ratio
FROM pg_stat_user_tables
WHERE n_dead_tup > 1000
ORDER BY dead_ratio DESC;
Anti-Patterns
- β
SELECT *β always specify needed columns - β Missing indexes on foreign keys β always index FK columns
- β
LIKE '%search%'β use full-text search or trigram indexes instead - β Large
INclauses β useANY(ARRAY[...])or join a values list - β No
LIMITon unbounded queries β always paginate - β Creating indexes without
CONCURRENTLYin production - β Running migrations without testing rollback
- β Ignoring
EXPLAIN ANALYZEoutput β always verify execution plans - β Storing money as
FLOATβ useDECIMAL(10,2)or integer cents - β Missing
NOT NULLconstraints β be explicit about nullability
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.