ramidamolis-alt

ai-ml-expert

0
0
# Install this skill:
npx skills add ramidamolis-alt/agent-skills-workflows --skill "ai-ml-expert"

Install specific skill from multi-skill repository

# Description

Expert in AI/ML with ALL MCP servers. Uses UltraThink for model analysis, Memory for experiment tracking, Context7 for ML docs, and NotebookLM for research papers.

# SKILL.md


name: ai-ml-expert
description: Expert in AI/ML with ALL MCP servers. Uses UltraThink for model analysis, Memory for experiment tracking, Context7 for ML docs, and NotebookLM for research papers.


๐Ÿค– AI/ML Expert Skill (Full MCP Integration)

Master AI/ML engineer using ALL 11 MCP servers.

MCP AI/ML Arsenal

MCP Server AI/ML Role
UltraThink Model analysis, hypothesis
Memory Experiment tracking, results
Context7 ML framework docs
NotebookLM Research papers
MongoDB Training data, metrics
Brave/Tavily Latest AI research
Notion ML documentation

Advanced AI/ML Patterns

1. Experiment Tracking (Memory)

// Before experiment
await mcp_Memory_create_entities([{
  name: `Experiment_${name}_${timestamp}`,
  entityType: "Experiment",
  observations: [
    `Hypothesis: ${hypothesis}`,
    `Model: ${modelArchitecture}`,
    `Dataset: ${dataset}`,
    `Hyperparams: ${JSON.stringify(hyperparams)}`,
    `Status: Running`
  ]
}]);

// After experiment
await mcp_Memory_add_observations([{
  entityName: `Experiment_${name}_${timestamp}`,
  contents: [
    `Results: Accuracy=${accuracy}, Loss=${loss}`,
    `Training time: ${trainingTime}`,
    `Conclusion: ${conclusion}`,
    `Status: Completed`
  ]
}]);

// Link to best model
await mcp_Memory_create_relations([
  { from: `Experiment_${name}`, to: "Model_Best", relationType: "improved" }
]);

2. Model Architecture Design (UltraThink)

await mcp_UltraThink_ultrathink({
  thought: `
    # Model Architecture Design

    ## Problem Definition
    - Task: ${taskType}
    - Input: ${inputShape}
    - Output: ${outputShape}
    - Constraints: ${constraints}

    ## Architecture Options

    ### Option A: Transformer
    - Pros: State-of-the-art, attention
    - Cons: Compute intensive
    - Params: ~${paramsA}M

    ### Option B: CNN + LSTM
    - Pros: Faster inference
    - Cons: Limited context
    - Params: ~${paramsB}M

    ### Option C: Fine-tuned LLM
    - Pros: Transfer learning
    - Cons: Large model
    - Params: ~${paramsC}B

    ## Recommendation
    Given ${constraints}, choose ${chosen} because...

    ## Architecture Details
    \`\`\`
    ${architectureDetails}
    \`\`\`
  `,
  total_thoughts: 30,
  confidence: 0.8
});

3. Research Paper Integration (NotebookLM)

// Research latest techniques
const research = await mcp_NotebookLM_ask_question(
  `What are the state-of-the-art techniques for ${task} in 2026?
   What are the key innovations?
   What are the implementation considerations?`,
  mlResearchNotebookId
);

// Synthesize with UltraThink
await mcp_UltraThink_ultrathink({
  thought: `
    # Research Analysis: ${task}

    ## Paper Findings
    ${research}

    ## Key Techniques
    1. ${technique1}: ${description1}
    2. ${technique2}: ${description2}

    ## Implementation Plan
    1. ...

    ## Expected Impact
    ${expectedImpact}
  `,
  total_thoughts: 20
});

// Store in Memory
await mcp_Memory_create_entities([{
  name: `Research_${topic}_2026`,
  entityType: "Research",
  observations: research.keyPoints
}]);

4. Training Metrics Pipeline (MongoDB)

// Store training metrics
await mcp_MongoDB_insert-many(
  "ml", "training_logs",
  epochs.map(e => ({
    experiment_id: experimentId,
    epoch: e.number,
    train_loss: e.trainLoss,
    val_loss: e.valLoss,
    train_acc: e.trainAcc,
    val_acc: e.valAcc,
    learning_rate: e.lr,
    timestamp: new Date()
  }))
);

// Analyze training dynamics
const analysis = await mcp_MongoDB_aggregate(
  "ml", "training_logs",
  [
    { $match: { experiment_id: experimentId } },
    { $group: {
      _id: null,
      bestValLoss: { $min: "$val_loss" },
      bestEpoch: { $min: { $cond: [{ $eq: ["$val_loss", { $min: "$val_loss" }] }, "$epoch", 999] } },
      overfit_point: { /* detect val_loss increasing */ }
    }}
  ]
);

5. Prompt Engineering for LLMs (Context7 + UltraThink)

// Get LLM documentation
const docs = await mcp_Context7_query-docs(
  "/anthropic/claude",
  "prompt engineering best practices"
);

// Design prompt with UltraThink
await mcp_UltraThink_ultrathink({
  thought: `
    # Prompt Engineering: ${task}

    ## Best Practices (from docs)
    ${docs.bestPractices}

    ## Prompt Design

    ### System Prompt
    ${systemPrompt}

    ### Few-Shot Examples
    ${examples}

    ### Output Format
    ${outputFormat}

    ## Expected Behavior
    - Input: ${sampleInput}
    - Output: ${expectedOutput}

    ## Testing Plan
    1. Edge cases: ...
    2. Adversarial inputs: ...
  `,
  total_thoughts: 20
});

Secret AI/ML Techniques

1. Experiment Comparison

// Compare experiments
const experiments = await mcp_Memory_search_nodes("Experiment");

await mcp_UltraThink_ultrathink({
  thought: `
    # Experiment Comparison

    | Experiment | Model | Accuracy | Loss | Time |
    |------------|-------|----------|------|------|
    ${experiments.map(e => `| ${e.name} | ${e.model} | ${e.acc} | ${e.loss} | ${e.time} |`).join("\n")}

    ## Best Performer: ${best.name}
    ## Key Differences: ${keyDifferences}
    ## Recommendation: ${recommendation}
  `,
  total_thoughts: 15
});

2. Hyperparameter Search Strategy

await mcp_UltraThink_ultrathink({
  thought: `
    # Hyperparameter Search Strategy

    ## Search Space
    - Learning rate: [1e-5, 1e-2]
    - Batch size: [16, 32, 64, 128]
    - Hidden dim: [256, 512, 1024]
    - Dropout: [0.1, 0.3, 0.5]

    ## Strategy Options
    1. Grid Search: ${gridSearchCost} experiments
    2. Random Search: ${randomSearchExpected}
    3. Bayesian: ${bayesianApproach}

    ## Recommendation
    Given ${computeBudget}, use ${chosen} with ${iterations} iterations

    ## Priority Order
    1. Learning rate (most sensitive)
    2. Hidden dim
    3. Batch size
    4. Dropout
  `,
  total_thoughts: 20
});

3. Data Quality Analysis

// Get data stats from MongoDB
const dataStats = await mcp_MongoDB_aggregate(
  "ml", "training_data",
  [
    { $group: {
      _id: "$label",
      count: { $sum: 1 },
      avgLength: { $avg: { $size: "$features" } }
    }},
    { $sort: { count: -1 } }
  ]
);

await mcp_UltraThink_ultrathink({
  thought: `
    # Data Quality Analysis

    ## Class Distribution
    ${dataStats.map(d => `- ${d._id}: ${d.count} (${d.percentage}%)`)}

    ## Imbalance Detection
    - Ratio: ${maxClass}:${minClass} = ${ratio}
    - Severity: ${severity}

    ## Recommendations
    1. Balancing: ${balancingStrategy}
    2. Augmentation: ${augmentationStrategy}
    3. Sampling: ${samplingStrategy}
  `,
  total_thoughts: 15
});

4. Model Debugging Pipeline

// When model underperforms
await mcp_SequentialThinking_sequentialthinking({
  thought: `
    # Model Debugging

    ## Step 1: Verify Data Pipeline
    - Check: Data loading correct?
    - Check: Preprocessing consistent?
    - Check: Labels aligned?

    ## Step 2: Check Gradients
    - Vanishing gradients?
    - Exploding gradients?
    - Dead neurons?

    ## Step 3: Analyze Loss Curve
    - Underfitting? (high train loss)
    - Overfitting? (train/val gap)
    - Learning rate issues?

    ## Step 4: Inspect Predictions
    - Error analysis
    - Confusion matrix
    - Failure cases
  `,
  thoughtNumber: 1,
  totalThoughts: 5
});

5. ML Documentation Generator

// Auto-generate ML documentation
const experiments = await mcp_Memory_search_nodes("Experiment");
const models = await mcp_Memory_search_nodes("Model");

await mcp_Notion_API-post-page({
  parent: { database_id: mlDocsDbId },
  properties: {
    title: [{ text: { content: "ML Project Documentation" } }]
  },
  children: [
    { type: "heading_1", heading_1: { rich_text: [{ text: { content: "Experiments" } }] } },
    ...experiments.map(e => ({
      type: "toggle",
      toggle: {
        rich_text: [{ text: { content: e.name } }],
        children: e.observations.map(o => ({
          type: "paragraph",
          paragraph: { rich_text: [{ text: { content: o } }] }
        }))
      }
    })),
    { type: "heading_1", heading_1: { rich_text: [{ text: { content: "Models" } }] } },
    ...models.map(m => ({
      type: "toggle",
      toggle: {
        rich_text: [{ text: { content: m.name } }],
        children: m.observations.map(o => ({
          type: "paragraph",
          paragraph: { rich_text: [{ text: { content: o } }] }
        }))
      }
    }))
  ]
});

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.