Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add ramidamolis-alt/agent-skills-workflows --skill "code-architect"
Install specific skill from multi-skill repository
# Description
Expert software architect using ALL MCP servers. Uses Memory for patterns, UltraThink for design decisions, Context7 for best practices, and MongoDB for data modeling.
# SKILL.md
name: code-architect
description: Expert software architect using ALL MCP servers. Uses Memory for patterns, UltraThink for design decisions, Context7 for best practices, and MongoDB for data modeling.
๐๏ธ Code Architect Skill (Full MCP Integration)
Master software architect using ALL 11 MCP servers.
MCP Architecture Arsenal
| MCP Server | Architecture Role |
|---|---|
| UltraThink | Design decisions, trade-offs |
| SequentialThinking | Step-by-step design |
| Memory | Past patterns, decisions |
| Context7 | Framework best practices |
| NotebookLM | Deep architecture research |
| MongoDB | Data modeling, schemas |
| Notion | Architecture documentation |
| Brave/Tavily | Modern patterns, trends |
Advanced Architecture Patterns
1. Architecture Decision Records (ADR) with MCP
await mcp_UltraThink_ultrathink({
thought: `
# ADR-${number}: ${title}
## Status
Proposed
## Context
${context}
## Decision Drivers
1. ${driver1}
2. ${driver2}
3. ${driver3}
## Considered Options
### Option A: ${optionA}
- Pros: ...
- Cons: ...
- Effort: ...
### Option B: ${optionB}
- Pros: ...
- Cons: ...
- Effort: ...
## Decision
We choose Option ${chosen} because...
## Consequences
- Positive: ...
- Negative: ...
- Risks: ...
`,
total_thoughts: 25,
confidence: 0.85,
assumptions: [
{ id: "A1", text: "Requirements are stable", critical: true },
{ id: "A2", text: "Team has X expertise", critical: false }
]
});
// Save to Memory
await mcp_Memory_create_entities([{
name: `ADR_${number}_${title}`,
entityType: "Decision",
observations: [summary, rationale, consequences]
}]);
// Save to Notion
await mcp_Notion_API-post-page({
parent: { database_id: adrDatabaseId },
properties: { title: [{ text: { content: `ADR-${number}: ${title}` } }] }
});
2. Pattern Discovery & Application
// Check Memory for existing patterns
const existingPatterns = await mcp_Memory_search_nodes(
`pattern ${domain}`
);
// Research current best practices
const [docs, web] = await Promise.all([
mcp_Context7_query-docs(frameworkId, "architecture patterns"),
mcp_Brave_brave_web_search(`${domain} architecture patterns 2026`)
]);
// Synthesize with UltraThink
await mcp_UltraThink_ultrathink({
thought: `
# Pattern Analysis for ${domain}
## Existing Patterns (Memory)
${existingPatterns.map(p => `- ${p.name}: ${p.description}`)}
## Framework Recommendations
${docs.patterns}
## Modern Practices (2026)
${web.trends}
## Recommended Pattern
${recommendation}
## Implementation Guide
1. ...
`,
total_thoughts: 20
});
3. Data Modeling with MongoDB
// Analyze existing schema
const currentSchema = await mcp_MongoDB_collection-schema(
database,
collection,
{ sampleSize: 100 }
);
// Design new schema with UltraThink
await mcp_UltraThink_ultrathink({
thought: `
# Data Model Design
## Current State
${JSON.stringify(currentSchema, null, 2)}
## Requirements
- ${requirement1}
- ${requirement2}
## Proposed Schema
\`\`\`json
${proposedSchema}
\`\`\`
## Index Strategy
- Primary: ...
- Secondary: ...
- Composite: ...
## Migration Plan
1. ...
`,
total_thoughts: 20
});
// Store decision in Memory
await mcp_Memory_create_entities([{
name: `DataModel_${collection}`,
entityType: "DataModel",
observations: [schema, indexStrategy, rationale]
}]);
4. Component Design with SequentialThinking
await mcp_SequentialThinking_sequentialthinking({
thought: `
# Component Design: ${componentName}
## Step 1: Responsibility Definition
- Single responsibility: ...
- Interface boundaries: ...
## Step 2: Dependency Analysis
- Depends on: ...
- Depended by: ...
- Coupling level: ...
## Step 3: Public Interface
- Methods: ...
- Events: ...
- Configuration: ...
## Step 4: Internal Structure
- Subcomponents: ...
- State management: ...
- Error handling: ...
## Step 5: Testing Strategy
- Unit tests: ...
- Integration tests: ...
- Edge cases: ...
`,
thoughtNumber: 1,
totalThoughts: 5
});
5. Cross-Cutting Concerns Analysis
await mcp_UltraThink_ultrathink({
thought: `
# Cross-Cutting Concerns for ${system}
## Logging
- Strategy: Structured JSON
- Levels: error, warn, info, debug
- Correlation: Request ID propagation
- Implementation: ...
## Error Handling
- Strategy: Result types with error union
- Recovery: Circuit breaker pattern
- Reporting: ...
## Security
- Authentication: ...
- Authorization: ...
- Input validation: ...
## Performance
- Caching strategy: ...
- Query optimization: ...
- Resource pooling: ...
## Observability
- Metrics: ...
- Tracing: ...
- Alerting: ...
`,
total_thoughts: 25
});
Secret Architecture Techniques
1. Architecture Knowledge Graph
// Build rich architecture knowledge
await mcp_Memory_create_entities([
{
name: "Component_UserService",
entityType: "Component",
observations: [
"Responsibility: User management",
"Pattern: Repository + Service",
"Dependencies: Database, Cache, AuthService",
"API: REST + GraphQL"
]
},
{
name: "Pattern_CQRS",
entityType: "Pattern",
observations: [
"Use case: Separate read/write",
"Benefits: Scalability, optimization",
"Complexity: Higher than CRUD"
]
}
]);
await mcp_Memory_create_relations([
{ from: "Component_UserService", to: "Pattern_Repository", relationType: "implements" },
{ from: "Component_UserService", to: "Component_AuthService", relationType: "depends_on" }
]);
2. Architecture Evolution Tracking
// Track architecture changes over time
await mcp_Memory_add_observations([{
entityName: "System_Architecture",
contents: [
`[${date}] Added: ${newComponent}`,
`[${date}] Changed: ${modification}`,
`[${date}] Deprecated: ${deprecated}`
]
}]);
3. Pattern Reuse Detection
// Find reusable patterns from other projects
const allPatterns = await mcp_Memory_search_nodes("Pattern");
const applicable = allPatterns.filter(p =>
p.observations.some(o =>
o.includes(currentRequirement) || o.includes(currentDomain)
)
);
console.log("Reusable patterns:", applicable);
4. Deep Framework Research
// Before major decisions - deep research
const research = await mcp_NotebookLM_ask_question(
`What are the architectural trade-offs of ${approach}?
What are common pitfalls?
What are success patterns?`,
architectureNotebookId
);
const analysis = await mcp_UltraThink_ultrathink({
thought: `Given research: ${research}. Applying to our context...`,
total_thoughts: 20
});
5. Documentation Generation
// Auto-generate architecture docs
const components = await mcp_Memory_search_nodes("Component");
const patterns = await mcp_Memory_search_nodes("Pattern");
const decisions = await mcp_Memory_search_nodes("Decision");
// Create Notion page
await mcp_Notion_API-post-page({
parent: { page_id: archDocsPageId },
properties: { title: [{ text: { content: "Architecture Overview" } }] },
children: [
{ type: "heading_1", heading_1: { rich_text: [{ text: { content: "Components" } }] } },
...components.map(c => ({
type: "bulleted_list_item",
bulleted_list_item: { rich_text: [{ text: { content: c.name } }] }
})),
{ type: "heading_1", heading_1: { rich_text: [{ text: { content: "Patterns" } }] } },
...patterns.map(p => ({
type: "bulleted_list_item",
bulleted_list_item: { rich_text: [{ text: { content: p.name } }] }
}))
]
});
6. Scalability Analysis
await mcp_UltraThink_ultrathink({
thought: `
# Scalability Analysis: ${system}
## Current Capacity
- Users: ${currentUsers}
- Requests/sec: ${currentRPS}
- Data size: ${currentDataSize}
## Growth Projections
- 6 months: ${projection6m}
- 1 year: ${projection1y}
- 3 years: ${projection3y}
## Bottleneck Analysis
1. Database: ${dbBottleneck}
2. API: ${apiBottleneck}
3. Cache: ${cacheBottleneck}
## Scaling Strategy
- Vertical: ...
- Horizontal: ...
- Sharding: ...
## Cost Analysis
${costAnalysis}
`,
total_thoughts: 30,
confidence: 0.8
});
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.