Manage Apple Reminders via the `remindctl` CLI on macOS (list, add, edit, complete, delete)....
npx skills add rmyndharis/antigravity-skills --skill "kpi-dashboard-design"
Install specific skill from multi-skill repository
# Description
Design effective KPI dashboards with metrics selection, visualization best practices, and real-time monitoring patterns. Use when building business dashboards, selecting metrics, or designing data visualization layouts.
# SKILL.md
name: kpi-dashboard-design
description: Design effective KPI dashboards with metrics selection, visualization best practices, and real-time monitoring patterns. Use when building business dashboards, selecting metrics, or designing data visualization layouts.
KPI Dashboard Design
Comprehensive patterns for designing effective Key Performance Indicator (KPI) dashboards that drive business decisions.
Do not use this skill when
- The task is unrelated to kpi dashboard design
- You need a different domain or tool outside this scope
Instructions
- Clarify goals, constraints, and required inputs.
- Apply relevant best practices and validate outcomes.
- Provide actionable steps and verification.
- If detailed examples are required, open
resources/implementation-playbook.md.
Use this skill when
- Designing executive dashboards
- Selecting meaningful KPIs
- Building real-time monitoring displays
- Creating department-specific metrics views
- Improving existing dashboard layouts
- Establishing metric governance
Core Concepts
1. KPI Framework
| Level | Focus | Update Frequency | Audience |
|---|---|---|---|
| Strategic | Long-term goals | Monthly/Quarterly | Executives |
| Tactical | Department goals | Weekly/Monthly | Managers |
| Operational | Day-to-day | Real-time/Daily | Teams |
2. SMART KPIs
Specific: Clear definition
Measurable: Quantifiable
Achievable: Realistic targets
Relevant: Aligned to goals
Time-bound: Defined period
3. Dashboard Hierarchy
βββ Executive Summary (1 page)
β βββ 4-6 headline KPIs
β βββ Trend indicators
β βββ Key alerts
βββ Department Views
β βββ Sales Dashboard
β βββ Marketing Dashboard
β βββ Operations Dashboard
β βββ Finance Dashboard
βββ Detailed Drilldowns
βββ Individual metrics
βββ Root cause analysis
Common KPIs by Department
Sales KPIs
Revenue Metrics:
- Monthly Recurring Revenue (MRR)
- Annual Recurring Revenue (ARR)
- Average Revenue Per User (ARPU)
- Revenue Growth Rate
Pipeline Metrics:
- Sales Pipeline Value
- Win Rate
- Average Deal Size
- Sales Cycle Length
Activity Metrics:
- Calls/Emails per Rep
- Demos Scheduled
- Proposals Sent
- Close Rate
Marketing KPIs
Acquisition:
- Cost Per Acquisition (CPA)
- Customer Acquisition Cost (CAC)
- Lead Volume
- Marketing Qualified Leads (MQL)
Engagement:
- Website Traffic
- Conversion Rate
- Email Open/Click Rate
- Social Engagement
ROI:
- Marketing ROI
- Campaign Performance
- Channel Attribution
- CAC Payback Period
Product KPIs
Usage:
- Daily/Monthly Active Users (DAU/MAU)
- Session Duration
- Feature Adoption Rate
- Stickiness (DAU/MAU)
Quality:
- Net Promoter Score (NPS)
- Customer Satisfaction (CSAT)
- Bug/Issue Count
- Time to Resolution
Growth:
- User Growth Rate
- Activation Rate
- Retention Rate
- Churn Rate
Finance KPIs
Profitability:
- Gross Margin
- Net Profit Margin
- EBITDA
- Operating Margin
Liquidity:
- Current Ratio
- Quick Ratio
- Cash Flow
- Working Capital
Efficiency:
- Revenue per Employee
- Operating Expense Ratio
- Days Sales Outstanding
- Inventory Turnover
Dashboard Layout Patterns
Pattern 1: Executive Summary
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β EXECUTIVE DASHBOARD [Date Range βΌ] β
βββββββββββββββ¬ββββββββββββββ¬ββββββββββββββ¬ββββββββββββββββββ€
β REVENUE β PROFIT β CUSTOMERS β NPS SCORE β
β $2.4M β $450K β 12,450 β 72 β
β β² 12% β β² 8% β β² 15% β β² 5pts β
βββββββββββββββ΄ββββββββββββββ΄ββββββββββββββ΄ββββββββββββββββββ€
β β
β Revenue Trend β Revenue by Product β
β βββββββββββββββββββββββββ β ββββββββββββββββββββ β
β β /\ /\ β β β ββββββββ 45% β β
β β / \ / \ /\ β β β ββββββ 32% β β
β β / \/ \ / \ β β β ββββ 18% β β
β β / \/ \ β β β ββ 5% β β
β βββββββββββββββββββββββββ β ββββββββββββββββββββ β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β π΄ Alert: Churn rate exceeded threshold (>5%) β
β π‘ Warning: Support ticket volume 20% above average β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Pattern 2: SaaS Metrics Dashboard
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β SAAS METRICS Jan 2024 [Monthly βΌ] β
ββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββ€
β ββββββββββββββββββ β MRR GROWTH β
β β MRR β β ββββββββββββββββββββββββββββββββββ β
β β $125,000 β β β /ββ β β
β β β² 8% β β β /ββββ/ β β
β ββββββββββββββββββ β β /ββββ/ β β
β ββββββββββββββββββ β β /ββββ/ β β
β β ARR β β β /ββββ/ β β
β β $1,500,000 β β ββββββββββββββββββββββββββββββββββ β
β β β² 15% β β J F M A M J J A S O N D β
β ββββββββββββββββββ β β
ββββββββββββββββββββββββΌβββββββββββββββββββββββββββββββββββββββ€
β UNIT ECONOMICS β COHORT RETENTION β
β β β
β CAC: $450 β Month 1: ββββββββββββββββββββ 100% β
β LTV: $2,700 β Month 3: βββββββββββββββββ 85% β
β LTV/CAC: 6.0x β Month 6: ββββββββββββββββ 80% β
β β Month 12: ββββββββββββββ 72% β
β Payback: 4 months β β
ββββββββββββββββββββββββ΄βββββββββββββββββββββββββββββββββββββββ€
β CHURN ANALYSIS β
β ββββββββββββ¬βββββββββββ¬βββββββββββ¬βββββββββββββββββββββββ β
β β Gross β Net β Logo β Expansion β β
β β 4.2% β 1.8% β 3.1% β 2.4% β β
β ββββββββββββ΄βββββββββββ΄βββββββββββ΄βββββββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Pattern 3: Real-time Operations
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β OPERATIONS CENTER Live β Last: 10:42:15 β
ββββββββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββββββ€
β SYSTEM HEALTH β SERVICE STATUS β
β ββββββββββββββββββββββββ β β
β β CPU MEM DISK β β β API Gateway Healthy β
β β 45% 72% 58% β β β User Service Healthy β
β β βββ ββββ βββ β β β Payment Service Degraded β
β β βββ ββββ βββ β β β Database Healthy β
β β βββ ββββ βββ β β β Cache Healthy β
β ββββββββββββββββββββββββ β β
ββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββββββββββ€
β REQUEST THROUGHPUT β ERROR RATE β
β ββββββββββββββββββββββββ β ββββββββββββββββββββββββββββ β
β β βββββ
ββββββ
ββββββββ
β β β ββββββββββββββββββββ β β
β ββββββββββββββββββββββββ β ββββββββββββββββββββββββββββ β
β Current: 12,450 req/s β Current: 0.02% β
β Peak: 18,200 req/s β Threshold: 1.0% β
ββββββββββββββββββββββββββββββ΄βββββββββββββββββββββββββββββββββ€
β RECENT ALERTS β
β 10:40 π‘ High latency on payment-service (p99 > 500ms) β
β 10:35 π’ Resolved: Database connection pool recovered β
β 10:22 π΄ Payment service circuit breaker tripped β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Implementation Patterns
SQL for KPI Calculations
-- Monthly Recurring Revenue (MRR)
WITH mrr_calculation AS (
SELECT
DATE_TRUNC('month', billing_date) AS month,
SUM(
CASE subscription_interval
WHEN 'monthly' THEN amount
WHEN 'yearly' THEN amount / 12
WHEN 'quarterly' THEN amount / 3
END
) AS mrr
FROM subscriptions
WHERE status = 'active'
GROUP BY DATE_TRUNC('month', billing_date)
)
SELECT
month,
mrr,
LAG(mrr) OVER (ORDER BY month) AS prev_mrr,
(mrr - LAG(mrr) OVER (ORDER BY month)) / LAG(mrr) OVER (ORDER BY month) * 100 AS growth_pct
FROM mrr_calculation;
-- Cohort Retention
WITH cohorts AS (
SELECT
user_id,
DATE_TRUNC('month', created_at) AS cohort_month
FROM users
),
activity AS (
SELECT
user_id,
DATE_TRUNC('month', event_date) AS activity_month
FROM user_events
WHERE event_type = 'active_session'
)
SELECT
c.cohort_month,
EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month)) AS months_since_signup,
COUNT(DISTINCT a.user_id) AS active_users,
COUNT(DISTINCT a.user_id)::FLOAT / COUNT(DISTINCT c.user_id) * 100 AS retention_rate
FROM cohorts c
LEFT JOIN activity a ON c.user_id = a.user_id
AND a.activity_month >= c.cohort_month
GROUP BY c.cohort_month, EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month))
ORDER BY c.cohort_month, months_since_signup;
-- Customer Acquisition Cost (CAC)
SELECT
DATE_TRUNC('month', acquired_date) AS month,
SUM(marketing_spend) / NULLIF(COUNT(new_customers), 0) AS cac,
SUM(marketing_spend) AS total_spend,
COUNT(new_customers) AS customers_acquired
FROM (
SELECT
DATE_TRUNC('month', u.created_at) AS acquired_date,
u.id AS new_customers,
m.spend AS marketing_spend
FROM users u
JOIN marketing_spend m ON DATE_TRUNC('month', u.created_at) = m.month
WHERE u.source = 'marketing'
) acquisition
GROUP BY DATE_TRUNC('month', acquired_date);
Python Dashboard Code (Streamlit)
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
st.set_page_config(page_title="KPI Dashboard", layout="wide")
# Header with date filter
col1, col2 = st.columns([3, 1])
with col1:
st.title("Executive Dashboard")
with col2:
date_range = st.selectbox(
"Period",
["Last 7 Days", "Last 30 Days", "Last Quarter", "YTD"]
)
# KPI Cards
def metric_card(label, value, delta, prefix="", suffix=""):
delta_color = "green" if delta >= 0 else "red"
delta_arrow = "β²" if delta >= 0 else "βΌ"
st.metric(
label=label,
value=f"{prefix}{value:,.0f}{suffix}",
delta=f"{delta_arrow} {abs(delta):.1f}%"
)
col1, col2, col3, col4 = st.columns(4)
with col1:
metric_card("Revenue", 2400000, 12.5, prefix="$")
with col2:
metric_card("Customers", 12450, 15.2)
with col3:
metric_card("NPS Score", 72, 5.0)
with col4:
metric_card("Churn Rate", 4.2, -0.8, suffix="%")
# Charts
col1, col2 = st.columns(2)
with col1:
st.subheader("Revenue Trend")
revenue_data = pd.DataFrame({
'Month': pd.date_range('2024-01-01', periods=12, freq='M'),
'Revenue': [180000, 195000, 210000, 225000, 240000, 255000,
270000, 285000, 300000, 315000, 330000, 345000]
})
fig = px.line(revenue_data, x='Month', y='Revenue',
line_shape='spline', markers=True)
fig.update_layout(height=300)
st.plotly_chart(fig, use_container_width=True)
with col2:
st.subheader("Revenue by Product")
product_data = pd.DataFrame({
'Product': ['Enterprise', 'Professional', 'Starter', 'Other'],
'Revenue': [45, 32, 18, 5]
})
fig = px.pie(product_data, values='Revenue', names='Product',
hole=0.4)
fig.update_layout(height=300)
st.plotly_chart(fig, use_container_width=True)
# Cohort Heatmap
st.subheader("Cohort Retention")
cohort_data = pd.DataFrame({
'Cohort': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],
'M0': [100, 100, 100, 100, 100],
'M1': [85, 87, 84, 86, 88],
'M2': [78, 80, 76, 79, None],
'M3': [72, 74, 70, None, None],
'M4': [68, 70, None, None, None],
})
fig = go.Figure(data=go.Heatmap(
z=cohort_data.iloc[:, 1:].values,
x=['M0', 'M1', 'M2', 'M3', 'M4'],
y=cohort_data['Cohort'],
colorscale='Blues',
text=cohort_data.iloc[:, 1:].values,
texttemplate='%{text}%',
textfont={"size": 12},
))
fig.update_layout(height=250)
st.plotly_chart(fig, use_container_width=True)
# Alerts Section
st.subheader("Alerts")
alerts = [
{"level": "error", "message": "Churn rate exceeded threshold (>5%)"},
{"level": "warning", "message": "Support ticket volume 20% above average"},
]
for alert in alerts:
if alert["level"] == "error":
st.error(f"π΄ {alert['message']}")
elif alert["level"] == "warning":
st.warning(f"π‘ {alert['message']}")
Best Practices
Do's
- Limit to 5-7 KPIs - Focus on what matters
- Show context - Comparisons, trends, targets
- Use consistent colors - Red=bad, green=good
- Enable drilldown - From summary to detail
- Update appropriately - Match metric frequency
Don'ts
- Don't show vanity metrics - Focus on actionable data
- Don't overcrowd - White space aids comprehension
- Don't use 3D charts - They distort perception
- Don't hide methodology - Document calculations
- Don't ignore mobile - Ensure responsive design
Resources
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.