zechenzhangAGI

pytorch-lightning

1,712
130
# Install this skill:
npx skills add zechenzhangAGI/AI-research-SKILLs --skill "pytorch-lightning"

Install specific skill from multi-skill repository

# Description

High-level PyTorch framework with Trainer class, automatic distributed training (DDP/FSDP/DeepSpeed), callbacks system, and minimal boilerplate. Scales from laptop to supercomputer with same code. Use when you want clean training loops with built-in best practices.

# SKILL.md


name: pytorch-lightning
description: High-level PyTorch framework with Trainer class, automatic distributed training (DDP/FSDP/DeepSpeed), callbacks system, and minimal boilerplate. Scales from laptop to supercomputer with same code. Use when you want clean training loops with built-in best practices.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [PyTorch Lightning, Training Framework, Distributed Training, DDP, FSDP, DeepSpeed, High-Level API, Callbacks, Best Practices, Scalable]
dependencies: [lightning, torch, transformers]


PyTorch Lightning - High-Level Training Framework

Quick start

PyTorch Lightning organizes PyTorch code to eliminate boilerplate while maintaining flexibility.

Installation:

pip install lightning

Convert PyTorch to Lightning (3 steps):

import lightning as L
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset

# Step 1: Define LightningModule (organize your PyTorch code)
class LitModel(L.LightningModule):
    def __init__(self, hidden_size=128):
        super().__init__()
        self.model = nn.Sequential(
            nn.Linear(28 * 28, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, 10)
        )

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = nn.functional.cross_entropy(y_hat, y)
        self.log('train_loss', loss)  # Auto-logged to TensorBoard
        return loss

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=1e-3)

# Step 2: Create data
train_loader = DataLoader(train_dataset, batch_size=32)

# Step 3: Train with Trainer (handles everything else!)
trainer = L.Trainer(max_epochs=10, accelerator='gpu', devices=2)
model = LitModel()
trainer.fit(model, train_loader)

That's it! Trainer handles:
- GPU/TPU/CPU switching
- Distributed training (DDP, FSDP, DeepSpeed)
- Mixed precision (FP16, BF16)
- Gradient accumulation
- Checkpointing
- Logging
- Progress bars

Common workflows

Workflow 1: From PyTorch to Lightning

Original PyTorch code:

model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
model.to('cuda')

for epoch in range(max_epochs):
    for batch in train_loader:
        batch = batch.to('cuda')
        optimizer.zero_grad()
        loss = model(batch)
        loss.backward()
        optimizer.step()

Lightning version:

class LitModel(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.model = MyModel()

    def training_step(self, batch, batch_idx):
        loss = self.model(batch)  # No .to('cuda') needed!
        return loss

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters())

# Train
trainer = L.Trainer(max_epochs=10, accelerator='gpu')
trainer.fit(LitModel(), train_loader)

Benefits: 40+ lines โ†’ 15 lines, no device management, automatic distributed

Workflow 2: Validation and testing

class LitModel(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.model = MyModel()

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = nn.functional.cross_entropy(y_hat, y)
        self.log('train_loss', loss)
        return loss

    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        val_loss = nn.functional.cross_entropy(y_hat, y)
        acc = (y_hat.argmax(dim=1) == y).float().mean()
        self.log('val_loss', val_loss)
        self.log('val_acc', acc)

    def test_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        test_loss = nn.functional.cross_entropy(y_hat, y)
        self.log('test_loss', test_loss)

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=1e-3)

# Train with validation
trainer = L.Trainer(max_epochs=10)
trainer.fit(model, train_loader, val_loader)

# Test
trainer.test(model, test_loader)

Automatic features:
- Validation runs every epoch by default
- Metrics logged to TensorBoard
- Best model checkpointing based on val_loss

Workflow 3: Distributed training (DDP)

# Same code as single GPU!
model = LitModel()

# 8 GPUs with DDP (automatic!)
trainer = L.Trainer(
    accelerator='gpu',
    devices=8,
    strategy='ddp'  # Or 'fsdp', 'deepspeed'
)

trainer.fit(model, train_loader)

Launch:

# Single command, Lightning handles the rest
python train.py

No changes needed:
- Automatic data distribution
- Gradient synchronization
- Multi-node support (just set num_nodes=2)

Workflow 4: Callbacks for monitoring

from lightning.pytorch.callbacks import ModelCheckpoint, EarlyStopping, LearningRateMonitor

# Create callbacks
checkpoint = ModelCheckpoint(
    monitor='val_loss',
    mode='min',
    save_top_k=3,
    filename='model-{epoch:02d}-{val_loss:.2f}'
)

early_stop = EarlyStopping(
    monitor='val_loss',
    patience=5,
    mode='min'
)

lr_monitor = LearningRateMonitor(logging_interval='epoch')

# Add to Trainer
trainer = L.Trainer(
    max_epochs=100,
    callbacks=[checkpoint, early_stop, lr_monitor]
)

trainer.fit(model, train_loader, val_loader)

Result:
- Auto-saves best 3 models
- Stops early if no improvement for 5 epochs
- Logs learning rate to TensorBoard

Workflow 5: Learning rate scheduling

class LitModel(L.LightningModule):
    # ... (training_step, etc.)

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)

        # Cosine annealing
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer,
            T_max=100,
            eta_min=1e-5
        )

        return {
            'optimizer': optimizer,
            'lr_scheduler': {
                'scheduler': scheduler,
                'interval': 'epoch',  # Update per epoch
                'frequency': 1
            }
        }

# Learning rate auto-logged!
trainer = L.Trainer(max_epochs=100)
trainer.fit(model, train_loader)

When to use vs alternatives

Use PyTorch Lightning when:
- Want clean, organized code
- Need production-ready training loops
- Switching between single GPU, multi-GPU, TPU
- Want built-in callbacks and logging
- Team collaboration (standardized structure)

Key advantages:
- Organized: Separates research code from engineering
- Automatic: DDP, FSDP, DeepSpeed with 1 line
- Callbacks: Modular training extensions
- Reproducible: Less boilerplate = fewer bugs
- Tested: 1M+ downloads/month, battle-tested

Use alternatives instead:
- Accelerate: Minimal changes to existing code, more flexibility
- Ray Train: Multi-node orchestration, hyperparameter tuning
- Raw PyTorch: Maximum control, learning purposes
- Keras: TensorFlow ecosystem

Common issues

Issue: Loss not decreasing

Check data and model setup:

# Add to training_step
def training_step(self, batch, batch_idx):
    if batch_idx == 0:
        print(f"Batch shape: {batch[0].shape}")
        print(f"Labels: {batch[1]}")
    loss = ...
    return loss

Issue: Out of memory

Reduce batch size or use gradient accumulation:

trainer = L.Trainer(
    accumulate_grad_batches=4,  # Effective batch = batch_size ร— 4
    precision='bf16'  # Or 'fp16', reduces memory 50%
)

Issue: Validation not running

Ensure you pass val_loader:

# WRONG
trainer.fit(model, train_loader)

# CORRECT
trainer.fit(model, train_loader, val_loader)

Issue: DDP spawns multiple processes unexpectedly

Lightning auto-detects GPUs. Explicitly set devices:

# Test on CPU first
trainer = L.Trainer(accelerator='cpu', devices=1)

# Then GPU
trainer = L.Trainer(accelerator='gpu', devices=1)

Advanced topics

Callbacks: See references/callbacks.md for EarlyStopping, ModelCheckpoint, custom callbacks, and callback hooks.

Distributed strategies: See references/distributed.md for DDP, FSDP, DeepSpeed ZeRO integration, multi-node setup.

Hyperparameter tuning: See references/hyperparameter-tuning.md for integration with Optuna, Ray Tune, and WandB sweeps.

Hardware requirements

  • CPU: Works (good for debugging)
  • Single GPU: Works
  • Multi-GPU: DDP (default), FSDP, or DeepSpeed
  • Multi-node: DDP, FSDP, DeepSpeed
  • TPU: Supported (8 cores)
  • Apple MPS: Supported

Precision options:
- FP32 (default)
- FP16 (V100, older GPUs)
- BF16 (A100/H100, recommended)
- FP8 (H100)

Resources

  • Docs: https://lightning.ai/docs/pytorch/stable/
  • GitHub: https://github.com/Lightning-AI/pytorch-lightning โญ 29,000+
  • Version: 2.5.5+
  • Examples: https://github.com/Lightning-AI/pytorch-lightning/tree/master/examples
  • Discord: https://discord.gg/lightning-ai
  • Used by: Kaggle winners, research labs, production teams

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.