DeconvFFT

agentic-workflows

0
0
# Install this skill:
npx skills add DeconvFFT/resume-crafter --skill "agentic-workflows"

Install specific skill from multi-skill repository

# Description

Build production-grade agentic AI systems with real-time streaming visibility, structured outputs, and multi-agent collaboration. Covers Anthropic/OpenAI/vLLM SDKs, A2A protocol for agent interoperability, Pydantic validation, LangGraph checkpointing for workflow resumption, vector DB memory (Pinecone/Chroma/FAISS), and guardrails for anti-hallucination. Use when building AI agents, multi-agent systems, tool-calling workflows, or applications requiring streaming agent reasoning to UI.

# SKILL.md


name: agentic-workflows
description: Build production-grade agentic AI systems with real-time streaming visibility, structured outputs, and multi-agent collaboration. Covers Anthropic/OpenAI/vLLM SDKs, A2A protocol for agent interoperability, Pydantic validation, LangGraph checkpointing for workflow resumption, vector DB memory (Pinecone/Chroma/FAISS), and guardrails for anti-hallucination. Use when building AI agents, multi-agent systems, tool-calling workflows, or applications requiring streaming agent reasoning to UI.


Agentic Workflows Skill

Build intelligent, observable, and resilient AI agent systems.

Architecture Decision Flow

New Agent System Request
           β”‚
           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Single task or multi-step?β”‚
β”‚ Single β†’ Simple LLM call β”‚
β”‚ Multi-step β†’ Agent loop  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
           β”‚
           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Need multiple specialists?β”‚
β”‚ Yes β†’ Multi-agent (A2A)  β”‚
β”‚ No β†’ Single agent        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
           β”‚
           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Long-running/resumable?   β”‚
β”‚ Yes β†’ LangGraph + checkpointβ”‚
β”‚ No β†’ Simple agent loop   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
           β”‚
           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Need memory across sessions?β”‚
β”‚ Yes β†’ Vector DB          β”‚
β”‚ No β†’ In-session state    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Provider Selection

Provider Best For Streaming Tools
Anthropic Claude Complex reasoning, extended thinking SSE Native
OpenAI GPT-4 General purpose, function calling SSE Native
vLLM Self-hosted, cost control OpenAI-compatible Via prompts

Quick Start Patterns

Anthropic Streaming with Tools

import anthropic

client = anthropic.Anthropic()

with client.messages.stream(
    model="claude-sonnet-4-5",
    max_tokens=4096,
    tools=[{"name": "search", "description": "Search the web", "input_schema": {...}}],
    messages=[{"role": "user", "content": "Research AI trends"}]
) as stream:
    for event in stream:
        if event.type == "content_block_delta":
            if hasattr(event.delta, "text"):
                print(event.delta.text, end="", flush=True)
            elif hasattr(event.delta, "thinking"):
                print(f"[Thinking] {event.delta.thinking}")

Structured Output with Pydantic

import instructor
from pydantic import BaseModel

class Analysis(BaseModel):
    summary: str
    confidence: float
    sources: list[str]

client = instructor.from_provider("anthropic/claude-sonnet-4-5")
result = client.create(
    response_model=Analysis,
    messages=[{"role": "user", "content": "Analyze market trends"}],
    max_retries=3
)

Reference Documentation

Task Reference File
Anthropic/OpenAI/vLLM SDK patterns references/llm-sdks.md
Multi-agent with A2A protocol references/multi-agent.md
Streaming to UI (SSE/WebSocket) references/streaming.md
Pydantic structured outputs references/structured-outputs.md
Memory with vector DBs references/memory.md
Checkpointing & resumption references/checkpointing.md
Guardrails & anti-hallucination references/guardrails.md

When to Use Multi-Agent

Scenario Approach
Different expertise needed Multi-agent with specialists
Verification required Debate pattern (critic agent)
Complex workflow orchestration Supervisor + workers
Simple tool use Single agent with tools
Independent subtasks Parallel agents

Production Checklist

  • [ ] Structured outputs with Pydantic validation
  • [ ] Retry logic with exponential backoff
  • [ ] Streaming to UI for visibility
  • [ ] Checkpointing for long-running workflows
  • [ ] Guardrails for input/output validation
  • [ ] Memory persistence (vector DB or KV store)
  • [ ] Error handling with graceful degradation
  • [ ] Observability (logging, tracing)

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.