Use when adding new error messages to React, or seeing "unknown error code" warnings.
npx skills add Xsir0/xsir-skills --skill "google-gemini-media"
Install specific skill from multi-skill repository
# Description
Use the Gemini API (Nano Banana image generation, Veo video, Gemini TTS speech and audio understanding) to deliver end-to-end multimodal media workflows and code templates for "generation + understanding".
# SKILL.md
name: google-gemini-media
description: Use the Gemini API (Nano Banana image generation, Veo video, Gemini TTS speech and audio understanding) to deliver end-to-end multimodal media workflows and code templates for "generation + understanding".
license: MIT
Gemini Multimodal Media (Image/Video/Speech) Skill
1. Goals and scope
This Skill consolidates six Gemini API capabilities into reusable workflows and implementation templates:
- Image generation (Nano Banana: text-to-image, image editing, multi-turn iteration)
- Image understanding (caption/VQA/classification/comparison, multi-image prompts; supports inline and Files API)
- Video generation (Veo 3.1: text-to-video, aspect ratio/resolution control, reference-image guidance, first/last frames, video extension, native audio)
- Video understanding (upload/inline/YouTube URL; summaries, Q&A, timestamped evidence)
- Speech generation (Gemini native TTS: single-speaker and multi-speaker; controllable style/accent/pace/tone)
- Audio understanding (upload/inline; description, transcription, time-range transcription, token counting)
Convention: This Skill follows the official Google Gen AI SDK (Node.js/REST) as the main line; currently only Node.js/REST examples are provided. If your project already wraps other languages or frameworks, map this Skill's request structure, model selection, and I/O spec to your wrapper layer.
2. Quick routing (decide which capability to use)
1) Do you need to produce images?
- Need to generate images from scratch or edit based on an image -> use Nano Banana image generation (see Section 5)
2) Do you need to understand images?
- Need recognition, description, Q&A, comparison, or info extraction -> use Image understanding (see Section 6)
3) Do you need to produce video?
- Need to generate an 8-second video (optionally with native audio) -> use Veo 3.1 video generation (see Section 7)
4) Do you need to understand video?
- Need summaries/Q&A/segment extraction with timestamps -> use Video understanding (see Section 8)
5) Do you need to read text aloud?
- Need controllable narration, podcast/audiobook style, etc. -> use Speech generation (TTS) (see Section 9)
6) Do you need to understand audio?
- Need audio descriptions, transcription, time-range transcription, token counting -> use Audio understanding (see Section 10)
3. Unified engineering constraints and I/O spec (must read)
3.0 Prerequisites (dependencies and tools)
- Node.js 18+ (match your project version)
- Install SDK (example):
npm install @google/genai
- REST examples only need
curl; if you need to parse image Base64, installjq(optional).
3.1 Authentication and environment variables
- Put your API key in
GEMINI_API_KEY - REST requests use
x-goog-api-key: $GEMINI_API_KEY
3.2 Two file input modes: Inline vs Files API
Inline (embedded bytes/Base64)
- Pros: shorter call chain, good for small files.
- Key constraint: total request size (text prompt + system instructions + embedded bytes) typically has a ~20MB ceiling.
Files API (upload then reference)
- Pros: good for large files, reusing the same file, or multi-turn conversations.
- Typical flow:
1. files.upload(...) (SDK) or POST /upload/v1beta/files (REST resumable)
2. Use file_data / file_uri in generateContent
Engineering suggestion: implement
ensure_file_uri()so that when a file exceeds a threshold (for example 10-15MB warning) or is reused, you automatically route through the Files API.
3.3 Unified handling of binary media outputs
- Images: usually returned as
inline_data(Base64) in response parts; in the SDK usepart.as_image()or decode Base64 and save as PNG/JPG. - Speech (TTS): usually returns PCM bytes (Base64); save as
.pcmor wrap into.wav(commonly 24kHz, 16-bit, mono). - Video (Veo): long-running async task; poll the operation; download the file (or use the returned URI).
4. Model selection matrix (choose by scenario)
Important: model names, versions, limits, and quotas can change over time. Verify against official docs before use. Last updated: 2026-01-22.
4.1 Image generation (Nano Banana)
- gemini-2.5-flash-image: optimized for speed/throughput; good for frequent, low-latency generation/editing.
- gemini-3-pro-image-preview: stronger instruction following and high-fidelity text rendering; better for professional assets and complex edits.
4.2 General image/video/audio understanding
- Docs use
gemini-3-flash-previewfor image, video, and audio understanding (choose stronger models as needed for quality/cost).
4.3 Video generation (Veo)
- Example model:
veo-3.1-generate-preview(generates 8-second video and can natively generate audio).
4.4 Speech generation (TTS)
- Example model:
gemini-2.5-flash-preview-tts(native TTS, currently in preview).
5. Image generation (Nano Banana)
5.1 Text-to-Image
SDK (Node.js) minimal template
import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const response = await ai.models.generateContent({
model: "gemini-2.5-flash-image",
contents:
"Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme",
});
const parts = response.candidates?.[0]?.content?.parts ?? [];
for (const part of parts) {
if (part.text) console.log(part.text);
if (part.inlineData?.data) {
fs.writeFileSync("out.png", Buffer.from(part.inlineData.data, "base64"));
}
}
REST (with imageConfig) minimal template
curl -s -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" -H "x-goog-api-key: $GEMINI_API_KEY" -H "Content-Type: application/json" -d '{
"contents":[{"parts":[{"text":"Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme"}]}],
"generationConfig": {"imageConfig": {"aspectRatio":"16:9"}}
}'
REST image parsing (Base64 decode)
curl -s -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H "Content-Type: application/json" \
-d '{"contents":[{"parts":[{"text":"A minimal studio product shot of a nano banana"}]}]}' \
| jq -r '.candidates[0].content.parts[] | select(.inline_data) | .inline_data.data' \
| base64 --decode > out.png
# macOS can use: base64 -D > out.png
5.2 Text-and-Image-to-Image
Use case: given an image, add/remove/modify elements, change style, color grading, etc.
SDK (Node.js) minimal template
import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const prompt =
"Add a nano banana on the table, keep lighting consistent, cinematic tone.";
const imageBase64 = fs.readFileSync("input.png").toString("base64");
const response = await ai.models.generateContent({
model: "gemini-2.5-flash-image",
contents: [
{ text: prompt },
{ inlineData: { mimeType: "image/png", data: imageBase64 } },
],
});
const parts = response.candidates?.[0]?.content?.parts ?? [];
for (const part of parts) {
if (part.inlineData?.data) {
fs.writeFileSync("edited.png", Buffer.from(part.inlineData.data, "base64"));
}
}
5.3 Multi-turn image iteration (Multi-turn editing)
Best practice: use chat for continuous iteration (for example: generate first, then "only edit a specific region/element", then "make variants in the same style").
To output mixed "text + image" results, set response_modalities to ["TEXT", "IMAGE"].
5.4 ImageConfig
You can set in generationConfig.imageConfig or the SDK config:
- aspectRatio: e.g. 16:9, 1:1.
- imageSize: e.g. 2K, 4K (higher resolution is usually slower/more expensive and model support can vary).
6. Image understanding (Image Understanding)
6.1 Two ways to provide input images
- Inline image data: suitable for small files (total request size < 20MB).
- Files API upload: better for large files or reuse across multiple requests.
6.2 Inline images (Node.js) minimal template
import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const imageBase64 = fs.readFileSync("image.jpg").toString("base64");
const response = await ai.models.generateContent({
model: "gemini-3-flash-preview",
contents: [
{ inlineData: { mimeType: "image/jpeg", data: imageBase64 } },
{ text: "Caption this image, and list any visible brands." },
],
});
console.log(response.text);
6.3 Upload and reference with Files API (Node.js) minimal template
import { GoogleGenAI, createPartFromUri, createUserContent } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const uploaded = await ai.files.upload({ file: "image.jpg" });
const response = await ai.models.generateContent({
model: "gemini-3-flash-preview",
contents: createUserContent([
createPartFromUri(uploaded.uri, uploaded.mimeType),
"Caption this image.",
]),
});
console.log(response.text);
6.4 Multi-image prompts
Append multiple images as multiple Part entries in the same contents; you can mix uploaded references and inline bytes.
7. Video generation (Veo 3.1)
7.1 Core features (must know)
- Generates 8-second high-fidelity video, optionally 720p / 1080p / 4k, and supports native audio generation (dialogue, ambience, SFX).
- Supports:
- Aspect ratio (16:9 / 9:16)
- Video extension (extend a generated video; typically limited to 720p)
- First/last frame control (frame-specific)
- Up to 3 reference images (image-based direction)
7.2 SDK (Node.js) minimal template: async polling + download
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const prompt =
"A cinematic shot of a cat astronaut walking on the moon. Include subtle wind ambience.";
let operation = await ai.models.generateVideos({
model: "veo-3.1-generate-preview",
prompt,
config: { resolution: "1080p" },
});
while (!operation.done) {
await new Promise((resolve) => setTimeout(resolve, 10_000));
operation = await ai.operations.getVideosOperation({ operation });
}
const video = operation.response?.generatedVideos?.[0]?.video;
if (!video) throw new Error("No video returned");
await ai.files.download({ file: video, downloadPath: "out.mp4" });
7.3 REST minimal template: predictLongRunning + poll + download
Key point: Veo REST uses :predictLongRunning to return an operation name, then poll GET /v1beta/{operation_name}; once done, download from the video URI in the response.
7.4 Common controls (recommend a unified wrapper)
aspectRatio:"16:9"or"9:16"resolution:"720p" | "1080p" | "4k"(higher resolutions are usually slower/more expensive)- When writing prompts: put dialogue in quotes; explicitly call out SFX and ambience; use cinematography language (camera position, movement, composition, lens effects, mood).
- Negative constraints: if the API supports a negative prompt field, use it; otherwise list elements you do not want to see.
7.5 Important limits (engineering fallback needed)
- Latency can vary from seconds to minutes; implement timeouts and retries.
- Generated videos are only retained on the server for a limited time (download promptly).
- Outputs include a SynthID watermark.
Polling fallback (with timeout/backoff) pseudocode
const deadline = Date.now() + 300_000; // 5 min
let sleepMs = 2000;
while (!operation.done && Date.now() < deadline) {
await new Promise((resolve) => setTimeout(resolve, sleepMs));
sleepMs = Math.min(Math.floor(sleepMs * 1.5), 15_000);
operation = await ai.operations.getVideosOperation({ operation });
}
if (!operation.done) throw new Error("video generation timed out");
8. Video understanding (Video Understanding)
8.1 Video input options
- Files API upload: recommended when file > 100MB, video length > ~1 minute, or you need reuse.
- Inline video data: for smaller files.
- Direct YouTube URL: can analyze public videos.
8.2 Files API (Node.js) minimal template
import { GoogleGenAI, createPartFromUri, createUserContent } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const uploaded = await ai.files.upload({ file: "sample.mp4" });
const response = await ai.models.generateContent({
model: "gemini-3-flash-preview",
contents: createUserContent([
createPartFromUri(uploaded.uri, uploaded.mimeType),
"Summarize this video. Provide timestamps for key events.",
]),
});
console.log(response.text);
8.3 Timestamp prompting strategy
- Ask for segmented bullets with "(mm:ss)" timestamps.
- Require "evidence with specific time ranges" and include downstream structured extraction (JSON) in the same prompt if needed.
9. Speech generation (Text-to-Speech, TTS)
9.1 Positioning
- Native TTS: for "precise reading + controllable style" (podcasts, audiobooks, ad voiceover, etc.).
- Distinguish from the Live API: Live API is more interactive and non-structured audio/multimodal conversation; TTS is focused on controlled narration.
9.2 Single-speaker TTS (Node.js) minimal template
import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const response = await ai.models.generateContent({
model: "gemini-2.5-flash-preview-tts",
contents: [{ parts: [{ text: "Say cheerfully: Have a wonderful day!" }] }],
config: {
responseModalities: ["AUDIO"],
speechConfig: {
voiceConfig: {
prebuiltVoiceConfig: { voiceName: "Kore" },
},
},
},
});
const data =
response.candidates?.[0]?.content?.parts?.[0]?.inlineData?.data ?? "";
if (!data) throw new Error("No audio returned");
fs.writeFileSync("out.pcm", Buffer.from(data, "base64"));
9.3 Multi-speaker TTS (max 2 speakers)
Requirements:
- Use multiSpeakerVoiceConfig
- Each speaker name must match the dialogue labels in the prompt (e.g., Joe/Jane).
9.4 Voice options and language
voice_namesupports 30 prebuilt voices (for example Zephyr, Puck, Charon, Kore, etc.).- The model can auto-detect input language and supports 24 languages (see docs for the list).
9.5 "Director notes" (strongly recommended for high-quality voice)
Provide controllable directions for style, pace, accent, etc., but avoid over-constraining.
10. Audio understanding (Audio Understanding)
10.1 Typical tasks
- Describe audio content (including non-speech like birds, alarms, etc.)
- Generate transcripts
- Transcribe specific time ranges
- Count tokens (for cost estimates/segmentation)
10.2 Files API (Node.js) minimal template
import { GoogleGenAI, createPartFromUri, createUserContent } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const uploaded = await ai.files.upload({ file: "sample.mp3" });
const response = await ai.models.generateContent({
model: "gemini-3-flash-preview",
contents: createUserContent([
"Describe this audio clip.",
createPartFromUri(uploaded.uri, uploaded.mimeType),
]),
});
console.log(response.text);
10.3 Key limits and engineering tips
- Supports common formats: WAV/MP3/AIFF/AAC/OGG/FLAC.
- Audio tokenization: about 32 tokens/second (about 1920 tokens per minute; values may change).
- Total audio length per prompt is capped at 9.5 hours; multi-channel audio is downmixed; audio is resampled (see docs for exact parameters).
- If total request size exceeds 20MB, you must use the Files API.
11. End-to-end examples (composition)
Example A: Image generation -> validation via understanding
1) Generate product images with Nano Banana (require negative space, consistent lighting).
2) Use image understanding for self-check: verify text clarity, brand spelling, and unsafe elements.
3) If not satisfied, feed the generated image into text+image editing and iterate.
Example B: Video generation -> video understanding -> narration script
1) Generate an 8-second shot with Veo (include dialogue or SFX).
2) Download and save (respect retention window).
3) Upload video to video understanding to produce a storyboard + timestamps + narration copy (then feed to TTS).
Example C: Audio understanding -> time-range transcription -> TTS redub
1) Upload meeting audio and transcribe full content.
2) Transcribe or summarize specific time ranges.
3) Use TTS to generate a "broadcast" version of the summary.
12. Compliance and risk (must follow)
- Ensure you have the necessary rights to upload images/video/audio; do not generate infringing, deceptive, harassing, or harmful content.
- Generated images and videos include SynthID watermarking; videos may also have regional/person-based generation constraints.
- Production systems must implement timeouts, retries, failure fallbacks, and human review/post-processing for generated content.
13. Quick reference (Checklist)
- [ ] Pick the right model: image generation (Flash Image / Pro Image Preview), video generation (Veo 3.1), TTS (Gemini 2.5 TTS), understanding (Gemini Flash/Pro).
- [ ] Pick the right input mode: inline for small files; Files API for large/reuse.
- [ ] Parse binary outputs correctly: image/audio via inline_data decode; video via operation polling + download.
- [ ] For video generation: set aspectRatio / resolution, and download promptly (avoid expiration).
- [ ] For TTS: set response_modalities=["AUDIO"]; max 2 speakers; speaker names must match prompt.
- [ ] For audio understanding: countTokens when needed; segment long audio or use Files API.
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.