Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add dkyazzentwatwa/chatgpt-skills --skill "time-series-decomposer"
Install specific skill from multi-skill repository
# Description
Decompose time series into trend, seasonal, and residual components. Use for forecasting, pattern analysis, and seasonality detection.
# SKILL.md
name: time-series-decomposer
description: Decompose time series into trend, seasonal, and residual components. Use for forecasting, pattern analysis, and seasonality detection.
Time Series Decomposer
Extract trend, seasonal, and residual components from time series data with visualization and basic forecasting.
Features
- Decomposition: Additive and multiplicative models
- Trend Extraction: Moving averages, polynomial fitting
- Seasonality Detection: Auto-detect and extract periodic patterns
- Residual Analysis: Identify anomalies in residuals
- Visualization: Component plots, ACF/PACF
- Basic Forecasting: Trend extrapolation, seasonal naive
Quick Start
from ts_decomposer import TimeSeriesDecomposer
decomposer = TimeSeriesDecomposer()
decomposer.load_csv("sales.csv", date_col="date", value_col="revenue")
# Decompose
result = decomposer.decompose(period=12) # Monthly seasonality
print(f"Trend strength: {result['trend_strength']:.2f}")
print(f"Seasonal strength: {result['seasonal_strength']:.2f}")
# Plot components
decomposer.plot_components("decomposition.png")
CLI Usage
# Basic decomposition
python ts_decomposer.py --input data.csv --date date --value sales --period 12
# Multiplicative model
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --model multiplicative
# With forecast
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --forecast 6
# Auto-detect period
python ts_decomposer.py --input data.csv --date date --value sales --auto-period
# Generate plots
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --plot components.png
# Output JSON
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --json
API Reference
TimeSeriesDecomposer Class
class TimeSeriesDecomposer:
def __init__(self)
# Data loading
def load_csv(self, filepath: str, date_col: str, value_col: str,
date_format: str = None) -> 'TimeSeriesDecomposer'
def load_series(self, series: pd.Series) -> 'TimeSeriesDecomposer'
def load_dataframe(self, df: pd.DataFrame, date_col: str,
value_col: str) -> 'TimeSeriesDecomposer'
# Decomposition
def decompose(self, period: int = None, model: str = "additive") -> dict
def detect_period(self) -> int
def extract_trend(self, method: str = "moving_average",
window: int = None) -> pd.Series
def extract_seasonal(self, period: int) -> pd.Series
# Analysis
def analyze_trend(self) -> dict
def analyze_seasonality(self) -> dict
def analyze_residuals(self) -> dict
def detect_anomalies(self, threshold: float = 2.0) -> pd.DataFrame
# Forecasting
def forecast(self, periods: int, method: str = "trend") -> pd.DataFrame
# Visualization
def plot_components(self, output: str) -> str
def plot_acf_pacf(self, output: str, lags: int = 40) -> str
def plot_seasonal(self, output: str) -> str
# Export
def to_dataframe(self) -> pd.DataFrame
def summary(self) -> str
Decomposition Models
Additive Model
Y(t) = Trend(t) + Seasonal(t) + Residual(t)
Best when seasonal variations are roughly constant.
result = decomposer.decompose(period=12, model="additive")
Multiplicative Model
Y(t) = Trend(t) * Seasonal(t) * Residual(t)
Best when seasonal variations scale with the level of the series.
result = decomposer.decompose(period=12, model="multiplicative")
Output Format
Decomposition Result
{
"model": "additive",
"period": 12,
"trend_strength": 0.85, # 0-1, higher = stronger trend
"seasonal_strength": 0.72, # 0-1, higher = stronger seasonality
"components": {
"observed": [...], # Original values
"trend": [...], # Trend component
"seasonal": [...], # Seasonal component
"residual": [...] # Residual component
},
"seasonal_pattern": { # Average seasonal effect by period
1: 0.12,
2: -0.05,
...
},
"statistics": {
"trend_slope": 0.023,
"trend_r_squared": 0.91,
"residual_std": 0.15,
"residual_mean": 0.002
}
}
Trend Analysis
trend_info = decomposer.analyze_trend()
# Returns:
{
"direction": "increasing", # "increasing", "decreasing", "flat"
"slope": 0.023,
"r_squared": 0.91,
"change_points": [ # Detected trend changes
{"index": 24, "date": "2023-01-01", "direction": "up"},
{"index": 48, "date": "2025-01-01", "direction": "down"}
],
"growth_rate": 0.028, # Compound growth rate
"volatility": 0.12
}
Seasonality Analysis
seasonal_info = decomposer.analyze_seasonality()
# Returns:
{
"detected_period": 12,
"strength": 0.72,
"pattern": {
1: {"value": 0.12, "label": "Jan", "rank": 3},
2: {"value": -0.05, "label": "Feb", "rank": 8},
...
},
"peak_period": 12, # Period with highest seasonal effect
"trough_period": 2, # Period with lowest seasonal effect
"seasonal_range": 0.35 # Max - Min seasonal effect
}
Period Detection
Auto-detect the seasonal period:
# Automatic detection using ACF
period = decomposer.detect_period()
print(f"Detected period: {period}")
# Or with decomposition
result = decomposer.decompose() # Auto-detects period
Anomaly Detection
Find outliers in residuals:
anomalies = decomposer.detect_anomalies(threshold=2.0)
# Returns DataFrame with anomalous points:
# date value residual zscore anomaly_type
# 0 2023-03-15 1250.5 450.2 3.2 high
# 1 2023-08-22 320.1 -380.5 -2.8 low
Basic Forecasting
# Trend extrapolation
forecast = decomposer.forecast(periods=12, method="trend")
# Seasonal naive (last season's values)
forecast = decomposer.forecast(periods=12, method="seasonal_naive")
# Trend + Seasonal
forecast = decomposer.forecast(periods=12, method="combined")
# Returns:
# date forecast lower_bound upper_bound
# 0 2024-01-01 1050.2 920.5 1180.0
# 1 2024-02-01 1080.5 945.2 1215.8
Visualization
Component Plot
decomposer.plot_components("components.png")
Generates a 4-panel plot:
1. Original series
2. Trend
3. Seasonal
4. Residuals
ACF/PACF Plot
decomposer.plot_acf_pacf("acf_pacf.png", lags=40)
Autocorrelation and partial autocorrelation functions.
Seasonal Plot
decomposer.plot_seasonal("seasonal.png")
Bar chart of seasonal effects by period.
Example Workflows
Sales Analysis
decomposer = TimeSeriesDecomposer()
decomposer.load_csv("monthly_sales.csv", "month", "revenue")
# Auto-detect and decompose
result = decomposer.decompose()
# Understand patterns
print(f"Trend: {decomposer.analyze_trend()['direction']}")
print(f"Peak season: Month {decomposer.analyze_seasonality()['peak_period']}")
# Plot
decomposer.plot_components("sales_analysis.png")
Anomaly Detection
decomposer = TimeSeriesDecomposer()
decomposer.load_csv("daily_metrics.csv", "date", "pageviews")
decomposer.decompose(period=7) # Weekly pattern
# Find unusual days
anomalies = decomposer.detect_anomalies(threshold=2.5)
print(f"Found {len(anomalies)} anomalous days")
Forecasting with Seasonality
decomposer = TimeSeriesDecomposer()
decomposer.load_csv("quarterly_data.csv", "quarter", "value")
decomposer.decompose(period=4, model="multiplicative")
# Forecast next year
forecast = decomposer.forecast(periods=4, method="combined")
print(forecast)
Dependencies
- pandas>=2.0.0
- numpy>=1.24.0
- scipy>=1.10.0
- statsmodels>=0.14.0
- matplotlib>=3.7.0
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.