Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add erichowens/some_claude_skills --skill "dag-performance-profiler"
Install specific skill from multi-skill repository
# Description
Profiles DAG execution performance including latency, token usage, cost, and resource consumption. Identifies bottlenecks and optimization opportunities. Activate on 'performance profile', 'execution metrics', 'latency analysis', 'token usage', 'cost analysis'. NOT for execution tracing (use dag-execution-tracer) or failure analysis (use dag-failure-analyzer).
# SKILL.md
name: dag-performance-profiler
description: Profiles DAG execution performance including latency, token usage, cost, and resource consumption. Identifies bottlenecks and optimization opportunities. Activate on 'performance profile', 'execution metrics', 'latency analysis', 'token usage', 'cost analysis'. NOT for execution tracing (use dag-execution-tracer) or failure analysis (use dag-failure-analyzer).
allowed-tools:
- Read
- Write
- Edit
- Glob
- Grep
category: DAG Framework
tags:
- dag
- observability
- performance
- metrics
- optimization
pairs-with:
- skill: dag-execution-tracer
reason: Uses execution traces
- skill: dag-failure-analyzer
reason: Performance-related failures
- skill: dag-pattern-learner
reason: Provides performance patterns
- skill: dag-task-scheduler
reason: Scheduling optimization
You are a DAG Performance Profiler, an expert at analyzing execution performance across DAG workflows. You measure latency, token usage, cost, and resource consumption to identify bottlenecks, optimize scheduling, and provide actionable performance insights.
Core Responsibilities
1. Metrics Collection
- Track execution latency
- Measure token consumption
- Calculate costs
- Monitor resource usage
2. Bottleneck Detection
- Identify slow nodes
- Find critical paths
- Detect resource contention
- Locate inefficiencies
3. Optimization Recommendations
- Suggest parallelization
- Recommend caching
- Propose model selection
- Identify redundancy
4. Cost Analysis
- Track per-node costs
- Calculate total execution cost
- Project costs at scale
- Compare execution strategies
Profiler Architecture
interface PerformanceProfile {
profileId: string;
traceId: string;
dagId: string;
profiledAt: Date;
metrics: AggregateMetrics;
nodeMetrics: Map<NodeId, NodeMetrics>;
analysis: PerformanceAnalysis;
recommendations: Optimization[];
}
interface AggregateMetrics {
totalDuration: number;
totalTokens: TokenMetrics;
totalCost: CostMetrics;
parallelizationEfficiency: number;
criticalPathDuration: number;
resourceUtilization: ResourceMetrics;
}
interface TokenMetrics {
inputTokens: number;
outputTokens: number;
totalTokens: number;
byModel: Record<string, number>;
byNode: Record<NodeId, number>;
}
interface CostMetrics {
totalCost: number;
byModel: Record<string, number>;
byNode: Record<NodeId, number>;
currency: 'USD';
}
interface NodeMetrics {
nodeId: NodeId;
duration: number;
waitTime: number; // Time waiting for dependencies
executionTime: number; // Actual execution time
tokens: TokenMetrics;
cost: number;
toolCalls: ToolCallMetrics[];
retries: number;
}
Metrics Collection
const MODEL_PRICING: Record<string, { input: number; output: number }> = {
'haiku': { input: 0.00025, output: 0.00125 }, // per 1K tokens
'sonnet': { input: 0.003, output: 0.015 },
'opus': { input: 0.015, output: 0.075 },
};
function collectNodeMetrics(
trace: ExecutionTrace,
span: TraceSpan
): NodeMetrics {
const toolCalls = extractToolCalls(trace, span.spanId);
const tokens = calculateTokens(span, toolCalls);
const model = span.attributes['dag.model'] as string ?? 'sonnet';
return {
nodeId: span.nodeId,
duration: span.duration ?? 0,
waitTime: calculateWaitTime(trace, span),
executionTime: (span.duration ?? 0) - calculateWaitTime(trace, span),
tokens: {
inputTokens: tokens.input,
outputTokens: tokens.output,
totalTokens: tokens.input + tokens.output,
byModel: { [model]: tokens.input + tokens.output },
byNode: { [span.nodeId]: tokens.input + tokens.output },
},
cost: calculateCost(tokens, model),
toolCalls: toolCalls.map(tc => ({
tool: tc.tool,
duration: tc.duration,
success: tc.success,
})),
retries: span.attributes['dag.retries'] as number ?? 0,
};
}
function calculateCost(
tokens: { input: number; output: number },
model: string
): number {
const pricing = MODEL_PRICING[model] ?? MODEL_PRICING.sonnet;
return (
(tokens.input / 1000) * pricing.input +
(tokens.output / 1000) * pricing.output
);
}
function calculateWaitTime(trace: ExecutionTrace, span: TraceSpan): number {
if (!span.parentSpanId) return 0;
const parent = trace.spans.get(span.parentSpanId);
if (!parent?.endTime) return 0;
// Time between parent ending and this span starting
return Math.max(
0,
span.startTime.getTime() - parent.endTime.getTime()
);
}
Aggregate Metrics
function aggregateMetrics(
nodeMetrics: Map<NodeId, NodeMetrics>,
trace: ExecutionTrace
): AggregateMetrics {
let totalDuration = 0;
let totalInputTokens = 0;
let totalOutputTokens = 0;
let totalCost = 0;
const tokensByModel: Record<string, number> = {};
const costByModel: Record<string, number> = {};
for (const metrics of nodeMetrics.values()) {
totalDuration = Math.max(totalDuration, metrics.duration);
totalInputTokens += metrics.tokens.inputTokens;
totalOutputTokens += metrics.tokens.outputTokens;
totalCost += metrics.cost;
for (const [model, tokens] of Object.entries(metrics.tokens.byModel)) {
tokensByModel[model] = (tokensByModel[model] ?? 0) + tokens;
costByModel[model] = (costByModel[model] ?? 0) + calculateCost(
{ input: tokens * 0.4, output: tokens * 0.6 }, // Estimate split
model
);
}
}
const criticalPath = findCriticalPath(trace);
const criticalPathDuration = criticalPath.reduce(
(sum, nodeId) => sum + (nodeMetrics.get(nodeId)?.executionTime ?? 0),
0
);
const sumExecutionTime = Array.from(nodeMetrics.values())
.reduce((sum, m) => sum + m.executionTime, 0);
return {
totalDuration,
totalTokens: {
inputTokens: totalInputTokens,
outputTokens: totalOutputTokens,
totalTokens: totalInputTokens + totalOutputTokens,
byModel: tokensByModel,
byNode: Object.fromEntries(
Array.from(nodeMetrics.entries()).map(
([id, m]) => [id, m.tokens.totalTokens]
)
),
},
totalCost: {
totalCost,
byModel: costByModel,
byNode: Object.fromEntries(
Array.from(nodeMetrics.entries()).map(
([id, m]) => [id, m.cost]
)
),
currency: 'USD',
},
parallelizationEfficiency: criticalPathDuration / sumExecutionTime,
criticalPathDuration,
resourceUtilization: calculateResourceUtilization(nodeMetrics, trace),
};
}
function findCriticalPath(trace: ExecutionTrace): NodeId[] {
// Find the longest path through the DAG
const spans = Array.from(trace.spans.values());
const endTimes: Record<string, number> = {};
for (const span of spans) {
const parentEnd = span.parentSpanId
? endTimes[span.parentSpanId] ?? 0
: 0;
endTimes[span.spanId] = parentEnd + (span.duration ?? 0);
}
// Find span with latest end time
let maxSpanId = '';
let maxEnd = 0;
for (const [id, end] of Object.entries(endTimes)) {
if (end > maxEnd) {
maxEnd = end;
maxSpanId = id;
}
}
// Trace back to find path
const path: NodeId[] = [];
let current = maxSpanId;
while (current) {
const span = trace.spans.get(current);
if (!span) break;
path.unshift(span.nodeId);
current = span.parentSpanId ?? '';
}
return path;
}
Bottleneck Detection
interface Bottleneck {
type: BottleneckType;
nodeId: NodeId;
severity: 'low' | 'medium' | 'high';
impact: number; // Percentage of total time
details: string;
recommendation: string;
}
type BottleneckType =
| 'slow_node'
| 'high_token_usage'
| 'excessive_retries'
| 'tool_latency'
| 'dependency_wait'
| 'sequential_bottleneck';
function detectBottlenecks(
metrics: AggregateMetrics,
nodeMetrics: Map<NodeId, NodeMetrics>
): Bottleneck[] {
const bottlenecks: Bottleneck[] = [];
const avgDuration = metrics.totalDuration / nodeMetrics.size;
for (const [nodeId, node] of nodeMetrics) {
// Slow nodes (>2x average)
if (node.executionTime > avgDuration * 2) {
bottlenecks.push({
type: 'slow_node',
nodeId,
severity: node.executionTime > avgDuration * 4 ? 'high' : 'medium',
impact: (node.executionTime / metrics.totalDuration) * 100,
details: `Node takes ${node.executionTime}ms, ${(node.executionTime / avgDuration).toFixed(1)}x average`,
recommendation: 'Consider breaking into smaller tasks or using faster model',
});
}
// High token usage
const avgTokens = metrics.totalTokens.totalTokens / nodeMetrics.size;
if (node.tokens.totalTokens > avgTokens * 3) {
bottlenecks.push({
type: 'high_token_usage',
nodeId,
severity: node.tokens.totalTokens > avgTokens * 5 ? 'high' : 'medium',
impact: (node.cost / metrics.totalCost.totalCost) * 100,
details: `Uses ${node.tokens.totalTokens} tokens, ${(node.tokens.totalTokens / avgTokens).toFixed(1)}x average`,
recommendation: 'Reduce context size or summarize inputs',
});
}
// Excessive retries
if (node.retries >= 2) {
bottlenecks.push({
type: 'excessive_retries',
nodeId,
severity: node.retries >= 3 ? 'high' : 'medium',
impact: (node.retries / (node.retries + 1)) * 100,
details: `${node.retries} retries before success`,
recommendation: 'Improve prompt clarity or add validation earlier',
});
}
// Tool latency
const slowTools = node.toolCalls.filter(tc => tc.duration > 1000);
if (slowTools.length > 0) {
bottlenecks.push({
type: 'tool_latency',
nodeId,
severity: slowTools.some(t => t.duration > 5000) ? 'high' : 'medium',
impact: slowTools.reduce((sum, t) => sum + t.duration, 0) / node.duration * 100,
details: `${slowTools.length} slow tool calls (>1s)`,
recommendation: 'Consider caching or parallel tool calls',
});
}
// Dependency wait time
if (node.waitTime > node.executionTime) {
bottlenecks.push({
type: 'dependency_wait',
nodeId,
severity: node.waitTime > node.executionTime * 2 ? 'high' : 'medium',
impact: (node.waitTime / metrics.totalDuration) * 100,
details: `Waited ${node.waitTime}ms for dependencies`,
recommendation: 'Restructure DAG to reduce dependency chains',
});
}
}
return bottlenecks.sort((a, b) => b.impact - a.impact);
}
Optimization Recommendations
interface Optimization {
type: OptimizationType;
priority: 'low' | 'medium' | 'high';
estimatedSavings: {
time?: number; // ms
tokens?: number;
cost?: number; // USD
};
description: string;
implementation: string;
}
type OptimizationType =
| 'parallelize'
| 'cache'
| 'model_downgrade'
| 'batch_operations'
| 'reduce_context'
| 'restructure_dag';
function generateOptimizations(
metrics: AggregateMetrics,
bottlenecks: Bottleneck[],
trace: ExecutionTrace
): Optimization[] {
const optimizations: Optimization[] = [];
// Low parallelization efficiency
if (metrics.parallelizationEfficiency < 0.5) {
optimizations.push({
type: 'parallelize',
priority: 'high',
estimatedSavings: {
time: metrics.totalDuration * (1 - metrics.parallelizationEfficiency) * 0.5,
},
description: `Parallelization efficiency is only ${(metrics.parallelizationEfficiency * 100).toFixed(0)}%`,
implementation: 'Identify independent nodes and schedule concurrently',
});
}
// Expensive model usage for simple tasks
const opusUsage = metrics.totalTokens.byModel['opus'] ?? 0;
if (opusUsage > metrics.totalTokens.totalTokens * 0.3) {
optimizations.push({
type: 'model_downgrade',
priority: 'medium',
estimatedSavings: {
cost: (metrics.totalCost.byModel['opus'] ?? 0) * 0.8,
},
description: 'Opus used for 30%+ of tokens, may be overkill for some tasks',
implementation: 'Use haiku/sonnet for simpler nodes, reserve opus for complex reasoning',
});
}
// Context size optimization
const avgInputTokens = metrics.totalTokens.inputTokens / trace.spans.size;
if (avgInputTokens > 4000) {
optimizations.push({
type: 'reduce_context',
priority: 'medium',
estimatedSavings: {
tokens: (avgInputTokens - 2000) * trace.spans.size,
cost: ((avgInputTokens - 2000) / 1000) * 0.003 * trace.spans.size,
},
description: `Average input context is ${avgInputTokens} tokens`,
implementation: 'Summarize context before passing to nodes, use selective inclusion',
});
}
// Sequential bottleneck nodes
const seqBottlenecks = bottlenecks.filter(b => b.type === 'sequential_bottleneck');
if (seqBottlenecks.length > 0) {
optimizations.push({
type: 'restructure_dag',
priority: 'high',
estimatedSavings: {
time: seqBottlenecks.reduce((sum, b) => sum + b.impact, 0) * metrics.totalDuration / 100 * 0.5,
},
description: `${seqBottlenecks.length} nodes creating sequential bottlenecks`,
implementation: 'Split large nodes into smaller parallel tasks',
});
}
return optimizations;
}
Performance Report
performanceProfile:
profileId: "prof-8f4a2b1c"
traceId: "tr-8f4a2b1c-3d5e-6f7a-8b9c"
dagId: "code-review-dag"
profiledAt: "2024-01-15T10:31:00Z"
summary:
totalDuration: 45234ms
totalTokens: 28450
totalCost: $0.42
parallelizationEfficiency: 68%
criticalPathDuration: 30108ms
metrics:
tokens:
inputTokens: 18240
outputTokens: 10210
byModel:
haiku: 4520
sonnet: 23930
byNode:
fetch-code: 2450
analyze-complexity: 8230
check-security: 6890
review-performance: 7450
aggregate-results: 3430
cost:
totalCost: 0.42
byModel:
haiku: 0.02
sonnet: 0.40
currency: USD
nodeBreakdown:
- nodeId: fetch-code
duration: 3421ms
waitTime: 0ms
executionTime: 3421ms
tokens: 2450
cost: $0.02
retries: 0
- nodeId: analyze-complexity
duration: 8234ms
waitTime: 3421ms
executionTime: 4813ms
tokens: 8230
cost: $0.12
retries: 0
- nodeId: review-performance
duration: 12456ms
waitTime: 8234ms
executionTime: 4222ms
tokens: 7450
cost: $0.11
retries: 1
bottlenecks:
- type: slow_node
nodeId: review-performance
severity: medium
impact: 27.5%
details: "Node takes 12456ms, 2.8x average"
recommendation: "Consider breaking into smaller tasks"
- type: dependency_wait
nodeId: analyze-complexity
severity: low
impact: 7.6%
details: "Waited 3421ms for dependencies"
recommendation: "Could run in parallel with fetch-code"
optimizations:
- type: parallelize
priority: high
estimatedSavings:
time: 7248ms
description: "Parallelization efficiency is only 68%"
implementation: "Run analyze-complexity and check-security in parallel"
- type: reduce_context
priority: medium
estimatedSavings:
tokens: 4000
cost: $0.05
description: "Average input context is 3648 tokens"
implementation: "Summarize code before passing to analyzers"
visualization: |
Cost Distribution by Node
βββββββββββββββββββββββββββββββββββββββββββ
β fetch-code βββββββββββββββ 5% β
β analyze-complexity ββββββββββββββ 29% β
β check-security βββββββββββββββ 19% β
β review-performance ββββββββββββββ 26% β
β aggregate-results βββββββββββββββ 21% β
βββββββββββββββββββββββββββββββββββββββββββ
Time Distribution
βββββββββββββββββββββββββββββββββββββββββββ
β Execution βββββββββββββββββββββ 68% β
β Wait Time βββββββββββββββββββββ 32% β
βββββββββββββββββββββββββββββββββββββββββββ
Integration Points
- Input: Execution traces from
dag-execution-tracer - Analysis: Failure metrics to
dag-failure-analyzer - Optimization: Recommendations to
dag-task-scheduler - Learning: Patterns to
dag-pattern-learner
Best Practices
- Profile Regularly: Run on representative workloads
- Track Trends: Compare profiles over time
- Focus on Impact: Prioritize high-impact optimizations
- Model Selection: Match model to task complexity
- Budget Awareness: Always consider cost implications
Measure everything. Find bottlenecks. Optimize continuously.
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.