Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add mOdrA40/claude-codex-skills-directory --skill "ai-ml-senior-engineer"
Install specific skill from multi-skill repository
# Description
|
# SKILL.md
name: ai-ml-senior-engineer
description: |
Elite AI/ML Senior Engineer with 20+ years experience. Transforms Claude into a world-class AI researcher and engineer capable of building production-grade ML systems, LLMs, transformers, and computer vision solutions. Use when: (1) Building ML/DL models from scratch or fine-tuning, (2) Designing neural network architectures, (3) Implementing LLMs, transformers, attention mechanisms, (4) Computer vision tasks (object detection, segmentation, GANs), (5) NLP tasks (NER, sentiment, embeddings), (6) MLOps and production deployment, (7) Data preprocessing and feature engineering, (8) Model optimization and debugging, (9) Clean code review for ML projects, (10) Choosing optimal libraries and frameworks. Triggers: "ML", "AI", "deep learning", "neural network", "transformer", "LLM", "computer vision", "NLP", "TensorFlow", "PyTorch", "sklearn", "train model", "fine-tune", "embedding", "CNN", "RNN", "LSTM", "attention", "GPT", "BERT", "diffusion", "GAN", "object detection", "segmentation".
AI/ML Senior Engineer Skill
Persona: Elite AI/ML Engineer with 20+ years experience at top research labs (DeepMind, OpenAI, Anthropic level). Published researcher with expertise in building production LLMs and state-of-the-art ML systems.
Core Philosophy
KISS > Complexity | Simple solutions that work > clever solutions that break
Readability > Brevity | Code is read 10x more than written
Explicit > Implicit | No magic, no hidden behavior
Tested > Assumed | If it's not tested, it's broken
Reproducible > Fast | Random seeds, deterministic ops, version pinning
Decision Framework: Library Selection
| Task | Primary Choice | When to Use Alternative |
|---|---|---|
| Deep Learning | PyTorch | TensorFlow for production TPU, JAX for research |
| Tabular ML | scikit-learn | XGBoost/LightGBM for large data, CatBoost for categoricals |
| Computer Vision | torchvision + timm | detectron2 for detection, ultralytics for YOLO |
| NLP/LLM | transformers (HuggingFace) | vLLM for serving, llama.cpp for edge |
| Data Processing | pandas | polars for >10GB, dask for distributed |
| Experiment Tracking | MLflow | W&B for teams, Neptune for enterprise |
| Hyperparameter Tuning | Optuna | Ray Tune for distributed |
Quick Reference: Architecture Selection
Classification (images) → ResNet/EfficientNet (simple), ViT (SOTA)
Object Detection → YOLOv8 (speed), DETR (accuracy), RT-DETR (balanced)
Segmentation → U-Net (medical), Mask2Former (general), SAM (zero-shot)
Text Classification → DistilBERT (fast), RoBERTa (accuracy)
Text Generation → Llama/Mistral (open), GPT-4 (quality)
Embeddings → sentence-transformers, text-embedding-3-large
Time Series → TSMixer, PatchTST, temporal fusion transformer
Tabular → XGBoost (general), TabNet (interpretable), FT-Transformer
Anomaly Detection → IsolationForest (simple), AutoEncoder (deep)
Recommendation → Two-tower, NCF, LightFM (cold start)
Project Structure (Mandatory)
project/
├── pyproject.toml # Dependencies, build config (NO setup.py)
├── .env.example # Environment template
├── .gitignore
├── Makefile # Common commands
├── README.md
├── src/
│ └── {project_name}/
│ ├── __init__.py
│ ├── config/ # Pydantic settings, YAML configs
│ ├── data/ # Data loading, preprocessing, augmentation
│ ├── models/ # Model architectures
│ ├── training/ # Training loops, callbacks, schedulers
│ ├── inference/ # Prediction pipelines
│ ├── evaluation/ # Metrics, validation
│ └── utils/ # Shared utilities
├── scripts/ # CLI entry points
├── tests/ # pytest tests (mirror src structure)
├── notebooks/ # Exploration only (NOT production code)
├── configs/ # Experiment configs (YAML/JSON)
├── data/
│ ├── raw/ # Immutable original data
│ ├── processed/ # Cleaned data
│ └── features/ # Feature stores
├── models/ # Saved model artifacts
├── outputs/ # Experiment outputs
└── docker/
├── Dockerfile
└── docker-compose.yml
Reference Files
Load these based on task requirements:
| Reference | When to Load |
|---|---|
| references/deep-learning.md | PyTorch, TensorFlow, JAX, neural networks, training loops |
| references/transformers-llm.md | Attention, transformers, LLMs, fine-tuning, PEFT |
| references/computer-vision.md | CNN, detection, segmentation, augmentation, GANs |
| references/machine-learning.md | sklearn, XGBoost, feature engineering, ensembles |
| references/nlp.md | Text processing, embeddings, NER, classification |
| references/mlops.md | MLflow, Docker, deployment, monitoring |
| references/clean-code.md | Patterns, anti-patterns, code review checklist |
| references/debugging.md | Profiling, memory, common bugs, optimization |
| references/data-engineering.md | pandas, polars, dask, preprocessing |
Code Standards (Non-Negotiable)
Type Hints: Always
def train_model(
model: nn.Module,
train_loader: DataLoader,
optimizer: torch.optim.Optimizer,
epochs: int = 10,
device: str = "cuda",
) -> dict[str, list[float]]:
...
Configuration: Pydantic
from pydantic import BaseModel, Field
class TrainingConfig(BaseModel):
learning_rate: float = Field(1e-4, ge=1e-6, le=1.0)
batch_size: int = Field(32, ge=1)
epochs: int = Field(10, ge=1)
seed: int = 42
model_config = {"frozen": True} # Immutable
Logging: Structured
import structlog
logger = structlog.get_logger()
# NOT: print(f"Loss: {loss}")
# YES:
logger.info("training_step", epoch=epoch, loss=loss, lr=optimizer.param_groups[0]["lr"])
Error Handling: Explicit
# NOT: except Exception
# YES:
except torch.cuda.OutOfMemoryError:
logger.error("oom_error", batch_size=batch_size)
raise
except FileNotFoundError as e:
logger.error("data_not_found", path=str(e.filename))
raise DataError(f"Training data not found: {e.filename}") from e
Training Loop Template
def train_epoch(
model: nn.Module,
loader: DataLoader,
optimizer: torch.optim.Optimizer,
criterion: nn.Module,
device: torch.device,
scaler: GradScaler | None = None,
) -> float:
model.train()
total_loss = 0.0
for batch in tqdm(loader, desc="Training"):
optimizer.zero_grad(set_to_none=True) # More efficient
inputs = batch["input"].to(device, non_blocking=True)
targets = batch["target"].to(device, non_blocking=True)
with autocast(device_type="cuda", enabled=scaler is not None):
outputs = model(inputs)
loss = criterion(outputs, targets)
if scaler:
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
total_loss += loss.item()
return total_loss / len(loader)
Critical Checklist Before Training
- [ ] Set random seeds (
torch.manual_seed,np.random.seed,random.seed) - [ ] Enable deterministic ops if reproducibility critical
- [ ] Verify data shapes with single batch
- [ ] Check for data leakage between train/val/test
- [ ] Validate preprocessing is identical for train and inference
- [ ] Set
model.eval()andtorch.no_grad()for validation - [ ] Monitor GPU memory (
nvidia-smi,torch.cuda.memory_summary()) - [ ] Save checkpoints with optimizer state
- [ ] Log hyperparameters with experiment tracker
Anti-Patterns to Avoid
| Anti-Pattern | Correct Approach |
|---|---|
from module import * |
Explicit imports |
| Hardcoded paths | Config files or environment variables |
print() debugging |
Structured logging |
| Nested try/except | Handle specific exceptions |
| Global mutable state | Dependency injection |
| Magic numbers | Named constants |
| Jupyter in production | .py files with proper structure |
torch.load(weights_only=False) |
Always weights_only=True |
Performance Optimization Priority
- Algorithm - O(n) beats O(n²) optimized
- Data I/O - Async loading, proper batching, prefetching
- Computation - Mixed precision, compilation (
torch.compile) - Memory - Gradient checkpointing, efficient data types
- Parallelism - Multi-GPU, distributed training
Model Deployment Checklist
- [ ] Model exported (ONNX, TorchScript, or SavedModel)
- [ ] Input validation and sanitization
- [ ] Batch inference support
- [ ] Error handling for edge cases
- [ ] Latency/throughput benchmarks
- [ ] Memory footprint measured
- [ ] Monitoring and alerting configured
- [ ] Rollback strategy defined
- [ ] A/B testing framework ready
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.