ncklrs

customer-health-analyst

1
0
# Install this skill:
npx skills add ncklrs/startup-os-skills --skill "customer-health-analyst"

Install specific skill from multi-skill repository

# Description

Expert customer health scoring and analytics guidance. Use when designing health scores, building churn prediction models, analyzing usage metrics, identifying at-risk accounts, creating executive dashboards, or performing cohort analysis. Use for leading indicator development, customer data enrichment, risk escalation frameworks, and retention analytics.

# SKILL.md


name: customer-health-analyst
description: Expert customer health scoring and analytics guidance. Use when designing health scores, building churn prediction models, analyzing usage metrics, identifying at-risk accounts, creating executive dashboards, or performing cohort analysis. Use for leading indicator development, customer data enrichment, risk escalation frameworks, and retention analytics.


Customer Health Analyst

Expert guidance for customer health scoring, predictive analytics, and data-driven customer success strategies. Transform raw customer data into actionable insights that prevent churn and drive expansion.

Philosophy

Customer health is not a single metric β€” it's a predictive system:

  1. Measure what matters β€” Health scores should predict outcomes, not just track activity
  2. Lead, don't lag β€” Focus on indicators that predict churn before it's too late
  3. Segment for action β€” Different customers need different interventions
  4. Automate detection β€” Scale health monitoring across your entire customer base
  5. Close the loop β€” Analytics without action is just expensive data collection

How This Skill Works

When invoked, apply the guidelines in rules/ organized by:

  • health-* β€” Health score design, weighting, and calibration
  • indicators-* β€” Leading vs lagging indicator analysis
  • churn-* β€” Prediction modeling and early warning systems
  • usage-* β€” Analytics and adoption metrics
  • risk-* β€” Identification, escalation, and intervention
  • data-* β€” Enrichment and customer 360 development
  • cohort-* β€” Analysis and benchmarking
  • executive-* β€” Reporting and dashboards
  • segmentation-* β€” Customer tiers and scoring models

Core Frameworks

The Health Score Hierarchy

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    COMPOSITE HEALTH SCORE                       β”‚
β”‚                         (0-100)                                 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                 β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚
β”‚  β”‚ PRODUCT  β”‚  β”‚ENGAGEMENTβ”‚  β”‚ GROWTH   β”‚  β”‚ SUPPORT  β”‚       β”‚
β”‚  β”‚  USAGE   β”‚  β”‚          β”‚  β”‚ SIGNALS  β”‚  β”‚ HEALTH   β”‚       β”‚
β”‚  β”‚  (35%)   β”‚  β”‚  (25%)   β”‚  β”‚  (20%)   β”‚  β”‚  (20%)   β”‚       β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚
β”‚                                                                 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                    COMPONENT METRICS                            β”‚
β”‚                                                                 β”‚
β”‚  Usage:        Engagement:    Growth:        Support:          β”‚
β”‚  - DAU/MAU     - NPS score    - Seat trend   - Ticket volume   β”‚
β”‚  - Features    - CSM meetings - Usage trend  - Resolution time β”‚
β”‚  - Depth       - Email opens  - Expansion    - Sentiment       β”‚
β”‚  - Breadth     - Logins       - Contract     - Escalations     β”‚
β”‚                                                                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Leading vs Lagging Indicators

Type Definition Examples Action Window
Leading Predict future outcomes Usage decline, engagement drop 60-90 days
Coincident Move with outcomes Support sentiment, NPS 30-60 days
Lagging Confirm after the fact Churn, revenue loss Too late

Customer Health States

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                                                                 β”‚
β”‚  THRIVING ──→ HEALTHY ──→ NEUTRAL ──→ AT-RISK ──→ CRITICAL    β”‚
β”‚    (85+)      (70-84)     (50-69)     (30-49)      (<30)       β”‚
β”‚                                                                 β”‚
β”‚  Expand       Monitor     Engage      Intervene    Escalate    β”‚
β”‚                                                                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Health Score Components

Component Weight Key Metrics Why It Matters
Product Usage 30-40% DAU/MAU, feature adoption, depth Usage predicts value realization
Engagement 20-25% NPS, CSM contact, responsiveness Relationship strength indicator
Growth Signals 15-20% Seat expansion, usage trend Investment signals commitment
Support Health 15-20% Ticket volume, sentiment, resolution Frustration predicts churn
Financial 5-10% Payment history, contract length Financial commitment level

Churn Risk Factors

Factor Risk Weight Detection Method
Champion departure Critical Contact tracking, LinkedIn
Usage decline >30% High Product analytics
Negative NPS (0-6) High Survey responses
Support escalations High Ticket analysis
Missed renewal meeting High CSM activity tracking
Contract downgrade Very High Billing data
Competitor mentions High Call transcripts, tickets
Budget review mentions Medium CSM notes

The Analytics Stack

Layer Purpose Tools/Methods
Collection Gather raw data Product events, CRM, support
Processing Clean and transform ETL, data pipelines
Calculation Compute scores Scoring algorithms
Storage Historical tracking Data warehouse
Visualization Present insights Dashboards, reports
Action Trigger interventions Alerting, automation

Key Metrics

Metric Formula Target
Health Score Accuracy Churn predicted / Actual churn >70%
Leading Indicator Correlation Correlation to outcomes >0.6
Score Distribution % in each health tier Bell curve
Intervention Success Rate Saved / Intervened >40%
Time to Detection Days before risk β†’ action <14 days
False Positive Rate False alerts / Total alerts <20%

Executive Dashboard KPIs

KPI Definition Benchmark
Gross Revenue Retention Retained ARR / Starting ARR 85-95%
Net Revenue Retention (Retained + Expansion) / Starting 100-130%
Logo Retention Retained customers / Starting 90-95%
Health Score Average Mean across customer base 65-75
At-Risk Revenue ARR with health <50 <15%
Expansion Rate Customers expanded / Total 15-30%

Cohort Analysis Framework

Cohort Type Segments By Use Case
Time-based Sign-up month/quarter Retention trends
Behavioral Feature usage patterns Activation success
Value-based ARR tier Segment economics
Industry Vertical Product-market fit
Acquisition Channel/source Marketing efficiency

Anti-Patterns

  • Vanity health scores β€” Scores that look good but don't predict outcomes
  • Over-weighted product usage β€” Ignoring relationship and sentiment signals
  • Lagging indicator focus β€” Measuring what already happened
  • One-size-fits-all thresholds β€” Same scores mean different things for different segments
  • Manual-only health tracking β€” Can't scale without automation
  • Score without action β€” Calculating risk without intervention playbooks
  • Annual calibration only β€” Health models need continuous refinement
  • Ignoring data quality β€” Garbage in, garbage out

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.