Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add jezweb/claude-skills --skill "fastmcp"
Install specific skill from multi-skill repository
# Description
|
# SKILL.md
name: fastmcp
description: |
Build MCP servers in Python with FastMCP to expose tools, resources, and prompts to LLMs. Supports storage backends, middleware, OAuth Proxy, OpenAPI integration, and FastMCP Cloud deployment. Prevents 30+ errors.
Use when: creating MCP servers, or troubleshooting module-level server, storage, lifespan, middleware, OAuth, background tasks, or FastAPI mount errors.
user-invocable: true
FastMCP - Build MCP Servers in Python
FastMCP is a Python framework for building Model Context Protocol (MCP) servers that expose tools, resources, and prompts to Large Language Models like Claude. This skill provides production-tested patterns, error prevention, and deployment strategies for building robust MCP servers.
Quick Start
Installation
pip install fastmcp
# or
uv pip install fastmcp
Minimal Server
from fastmcp import FastMCP
# MUST be at module level for FastMCP Cloud
mcp = FastMCP("My Server")
@mcp.tool()
async def hello(name: str) -> str:
"""Say hello to someone."""
return f"Hello, {name}!"
if __name__ == "__main__":
mcp.run()
Run it:
# Local development
python server.py
# With FastMCP CLI
fastmcp dev server.py
# HTTP mode
python server.py --transport http --port 8000
What's New in v2.14.x (December 2025)
v2.14.2 (December 31, 2024)
- MCP SDK pinned to <2.x for compatibility
- Supabase provider gains
auth_routeparameter - Bug fixes: outputSchema
$refresolution, OAuth Proxy validation, OpenAPI 3.1 support
v2.14.1: Sampling with Tools (SEP-1577)
ctx.sample()now accepts tools for agentic workflowsAnthropicSamplingHandlerpromoted from experimentalctx.sample_step()for single LLM call returningSampleStep- Python 3.13 support added
v2.14.0: Background Tasks (SEP-1686)
- Protocol-native background tasks for long-running operations
- Add
task=Trueto async decorators; progress tracking without blocking - MCP 2025-11-25 specification support
- SEP-1699: SSE polling and event resumability
- SEP-1330: Multi-select enum elicitation schemas
- SEP-1034: Default values for elicitation schemas
⚠️ Breaking Changes (v2.14.0):
- BearerAuthProvider module removed (use JWTVerifier or OAuthProxy)
- Context.get_http_request() method removed
- fastmcp.Image top-level import removed (use from fastmcp.utilities import Image)
- enable_docket, enable_tasks settings removed (always enabled)
- run_streamable_http_async(), sse_app(), streamable_http_app(), run_sse_async() methods removed
- dependencies parameter removed from decorators
- output_schema=False support eliminated
- FASTMCP_SERVER_ environment variable prefix deprecated
Known Compatibility:
- MCP SDK pinned to <2.x (v2.14.2+)
What's New in v3.0.0 (Beta - January 2026)
⚠️ MAJOR BREAKING CHANGES - FastMCP 3.0 is a complete architectural refactor.
Provider Architecture
All components now sourced via Providers:
- FileSystemProvider - Discover decorated functions from directories with hot-reload
- SkillsProvider - Expose agent skill files as MCP resources
- OpenAPIProvider - Auto-generate from OpenAPI specs
- ProxyProvider - Proxy to remote MCP servers
from fastmcp import FastMCP
from fastmcp.providers import FileSystemProvider
mcp = FastMCP("server")
mcp.add_provider(FileSystemProvider(path="./tools", reload=True))
Transforms (Component Middleware)
Modify components without changing source code:
- Namespace, rename, filter by version
- ResourcesAsTools - Expose resources as tools
- PromptsAsTools - Expose prompts as tools
from fastmcp.transforms import Namespace, VersionFilter
mcp.add_transform(Namespace(prefix="api"))
mcp.add_transform(VersionFilter(min_version="2.0"))
Component Versioning
@mcp.tool(version="2.0")
async def fetch_data(query: str) -> dict:
# Clients see highest version by default
# Can request specific version
return {"data": [...]}
Session-Scoped State
@mcp.tool()
async def set_preference(key: str, value: str, ctx: Context) -> dict:
await ctx.set_state(key, value) # Persists across session
return {"saved": True}
@mcp.tool()
async def get_preference(key: str, ctx: Context) -> dict:
value = await ctx.get_state(key, default=None)
return {"value": value}
Other Features
--reloadflag for auto-restart during development- Automatic threadpool dispatch for sync functions
- Tool timeouts
- OpenTelemetry tracing
- Component authorization:
@tool(auth=require_scopes("admin"))
Migration Guide
Pin to v2 if not ready:
# requirements.txt
fastmcp<3
For most servers, updating the import is all you need:
# v2.x and v3.0 compatible
from fastmcp import FastMCP
mcp = FastMCP("server")
# ... rest of code works the same
Core Concepts
Tools
Functions LLMs can call. Best practices: Clear names, comprehensive docstrings (LLMs read these!), strong type hints (Pydantic validates), structured returns, error handling.
@mcp.tool()
async def async_tool(url: str) -> dict: # Use async for I/O
async with httpx.AsyncClient() as client:
return (await client.get(url)).json()
Resources
Expose data to LLMs. URI schemes: data://, file://, resource://, info://, api://, or custom.
@mcp.resource("user://{user_id}/profile") # Template with parameters
async def get_user(user_id: str) -> dict: # CRITICAL: param names must match
return await fetch_user_from_db(user_id)
Prompts
Pre-configured prompts with parameters.
@mcp.prompt("analyze")
def analyze_prompt(topic: str) -> str:
return f"Analyze {topic} considering: state, challenges, opportunities, recommendations."
Context Features
Inject Context parameter (with type hint!) for advanced features:
Elicitation (User Input):
from fastmcp import Context
@mcp.tool()
async def confirm_action(action: str, context: Context) -> dict:
confirmed = await context.request_elicitation(prompt=f"Confirm {action}?", response_type=str)
return {"status": "completed" if confirmed.lower() == "yes" else "cancelled"}
Progress Tracking:
@mcp.tool()
async def batch_import(file_path: str, context: Context) -> dict:
data = await read_file(file_path)
for i, item in enumerate(data):
await context.report_progress(i + 1, len(data), f"Importing {i + 1}/{len(data)}")
await import_item(item)
return {"imported": len(data)}
Sampling (LLM calls from tools):
@mcp.tool()
async def enhance_text(text: str, context: Context) -> str:
response = await context.request_sampling(
messages=[{"role": "user", "content": f"Enhance: {text}"}],
temperature=0.7
)
return response["content"]
Background Tasks (v2.14.0+)
Long-running operations that report progress without blocking clients. Uses Docket task scheduler (always enabled in v2.14.0+).
Basic Usage:
@mcp.tool(task=True) # Enable background task mode
async def analyze_large_dataset(dataset_id: str, context: Context) -> dict:
"""Analyze large dataset with progress tracking."""
data = await fetch_dataset(dataset_id)
for i, chunk in enumerate(data.chunks):
# Report progress to client
await context.report_progress(
current=i + 1,
total=len(data.chunks),
message=f"Processing chunk {i + 1}/{len(data.chunks)}"
)
await process_chunk(chunk)
return {"status": "complete", "records_processed": len(data)}
Task States: pending → running → completed / failed / cancelled
When to Use:
- Operations taking >30 seconds (LLM timeout risk)
- Batch processing with per-item status updates
- Operations that may need user input mid-execution
- Long-running API calls or data processing
Known Limitation (v2.14.x):
- statusMessage from ctx.report_progress() is not forwarded to clients during background task polling (GitHub Issue #2904)
- Progress messages appear in server logs but not in client UI
- Workaround: Use official MCP SDK (mcp>=1.10.0) instead of FastMCP for now
- Status: Fix pending in PR #2906
Important: Tasks execute through Docket scheduler. Cannot execute tasks through proxies (will raise error).
Sampling with Tools (v2.14.1+)
Servers can pass tools to ctx.sample() for agentic workflows where the LLM can call tools during sampling.
Agentic Sampling:
from fastmcp import Context
from fastmcp.sampling import AnthropicSamplingHandler
# Configure sampling handler
mcp = FastMCP("Agent Server")
mcp.add_sampling_handler(AnthropicSamplingHandler(api_key=os.getenv("ANTHROPIC_API_KEY")))
@mcp.tool()
async def research_topic(topic: str, context: Context) -> dict:
"""Research a topic using agentic sampling with tools."""
# Define tools available during sampling
research_tools = [
{
"name": "search_web",
"description": "Search the web for information",
"inputSchema": {"type": "object", "properties": {"query": {"type": "string"}}}
},
{
"name": "fetch_url",
"description": "Fetch content from a URL",
"inputSchema": {"type": "object", "properties": {"url": {"type": "string"}}}
}
]
# Sample with tools - LLM can call these tools during reasoning
result = await context.sample(
messages=[{"role": "user", "content": f"Research: {topic}"}],
tools=research_tools,
max_tokens=4096
)
return {"research": result.content, "tools_used": result.tool_calls}
Single-Step Sampling:
@mcp.tool()
async def get_single_response(prompt: str, context: Context) -> dict:
"""Get a single LLM response without tool loop."""
# sample_step() returns SampleStep for inspection
step = await context.sample_step(
messages=[{"role": "user", "content": prompt}],
temperature=0.7
)
return {
"content": step.content,
"model": step.model,
"stop_reason": step.stop_reason
}
Sampling Handlers:
- AnthropicSamplingHandler - For Claude models (v2.14.1+)
- OpenAISamplingHandler - For GPT models
Known Limitation:
ctx.sample() works when client connects to a single server but fails with "Sampling not supported" error when multiple servers are configured in client. Tools without sampling work fine. (Community-sourced finding)
Storage Backends
Built on py-key-value-aio for OAuth tokens, response caching, persistent state.
Available Backends:
- Memory (default): Ephemeral, fast, dev-only
- Disk: Persistent, encrypted with FernetEncryptionWrapper, platform-aware (Mac/Windows default)
- Redis: Distributed, production, multi-instance
- Others: DynamoDB, MongoDB, Elasticsearch, Memcached, RocksDB, Valkey
Basic Usage:
from key_value.stores import DiskStore, RedisStore
from key_value.encryption import FernetEncryptionWrapper
from cryptography.fernet import Fernet
# Disk (persistent, single instance)
mcp = FastMCP("Server", storage=DiskStore(path="/app/data/storage"))
# Redis (distributed, production)
mcp = FastMCP("Server", storage=RedisStore(
host=os.getenv("REDIS_HOST"), password=os.getenv("REDIS_PASSWORD")
))
# Encrypted storage (recommended)
mcp = FastMCP("Server", storage=FernetEncryptionWrapper(
key_value=DiskStore(path="/app/data"),
fernet=Fernet(os.getenv("STORAGE_ENCRYPTION_KEY"))
))
Platform Defaults: Mac/Windows use Disk, Linux uses Memory. Override with storage parameter.
Server Lifespans
⚠️ Breaking Change in v2.13.0: Lifespan behavior changed from per-session to per-server-instance.
Initialize/cleanup resources once per server (NOT per session) - critical for DB connections, API clients.
from contextlib import asynccontextmanager
from dataclasses import dataclass
@dataclass
class AppContext:
db: Database
api_client: httpx.AsyncClient
@asynccontextmanager
async def app_lifespan(server: FastMCP):
"""Runs ONCE per server instance."""
db = await Database.connect(os.getenv("DATABASE_URL"))
api_client = httpx.AsyncClient(base_url=os.getenv("API_BASE_URL"), timeout=30.0)
try:
yield AppContext(db=db, api_client=api_client)
finally:
await db.disconnect()
await api_client.aclose()
mcp = FastMCP("Server", lifespan=app_lifespan)
# Access in tools
@mcp.tool()
async def query_db(sql: str, context: Context) -> list:
app_ctx = context.fastmcp_context.lifespan_context
return await app_ctx.db.query(sql)
ASGI Integration (FastAPI/Starlette):
mcp = FastMCP("Server", lifespan=mcp_lifespan)
app = FastAPI(lifespan=mcp.lifespan) # ✅ MUST pass lifespan!
State Management:
context.fastmcp_context.set_state(key, value) # Store
context.fastmcp_context.get_state(key, default=None) # Retrieve
Middleware System
8 Built-in Types: TimingMiddleware, ResponseCachingMiddleware, LoggingMiddleware, RateLimitingMiddleware, ErrorHandlingMiddleware, ToolInjectionMiddleware, PromptToolMiddleware, ResourceToolMiddleware
Execution Order (order matters!):
Request Flow:
→ ErrorHandlingMiddleware (catches errors)
→ TimingMiddleware (starts timer)
→ LoggingMiddleware (logs request)
→ RateLimitingMiddleware (checks rate limit)
→ ResponseCachingMiddleware (checks cache)
→ Tool/Resource Handler
Basic Usage:
from fastmcp.middleware import ErrorHandlingMiddleware, TimingMiddleware, LoggingMiddleware
mcp.add_middleware(ErrorHandlingMiddleware()) # First: catch errors
mcp.add_middleware(TimingMiddleware()) # Second: time requests
mcp.add_middleware(LoggingMiddleware(level="INFO"))
mcp.add_middleware(RateLimitingMiddleware(max_requests=100, window_seconds=60))
mcp.add_middleware(ResponseCachingMiddleware(ttl_seconds=300, storage=RedisStore()))
Custom Middleware:
from fastmcp.middleware import BaseMiddleware
class AccessControlMiddleware(BaseMiddleware):
async def on_call_tool(self, tool_name, arguments, context):
user = context.fastmcp_context.get_state("user_id")
if user not in self.allowed_users:
raise PermissionError(f"User not authorized")
return await self.next(tool_name, arguments, context)
Hook Hierarchy: on_message (all) → on_request/on_notification → on_call_tool/on_read_resource/on_get_prompt → on_list_* (list operations)
Server Composition
Two Strategies:
-
import_server()- Static snapshot: One-time copy at import, changes don't propagate, fast (no runtime delegation). Use for: Finalized component bundles. -
mount()- Dynamic link: Live runtime link, changes immediately visible, runtime delegation (slower). Use for: Modular runtime composition.
Basic Usage:
# Import (static)
main_server.import_server(api_server) # One-time copy
# Mount (dynamic)
main_server.mount(api_server, prefix="api") # Tools: api.fetch_data
main_server.mount(db_server, prefix="db") # Resources: resource://db/path
Tag Filtering:
@api_server.tool(tags=["public"])
def public_api(): pass
main_server.import_server(api_server, include_tags=["public"]) # Only public
main_server.mount(api_server, prefix="api", exclude_tags=["admin"]) # No admin
Resource Prefix Formats:
- Path (default since v2.4.0): resource://prefix/path
- Protocol (legacy): prefix+resource://path
main_server.mount(subserver, prefix="api", resource_prefix_format="path")
OAuth & Authentication
4 Authentication Patterns:
- Token Validation (
JWTVerifier): Validate external tokens - External Identity Providers (
RemoteAuthProvider): OAuth 2.0/OIDC with DCR - OAuth Proxy (
OAuthProxy): Bridge to providers without DCR (GitHub, Google, Azure, AWS, Discord, Facebook) - Full OAuth (
OAuthProvider): Complete authorization server
Pattern 1: Token Validation
from fastmcp.auth import JWTVerifier
auth = JWTVerifier(issuer="https://auth.example.com", audience="my-server",
public_key=os.getenv("JWT_PUBLIC_KEY"))
mcp = FastMCP("Server", auth=auth)
Pattern 3: OAuth Proxy (Production)
from fastmcp.auth import OAuthProxy
from key_value.stores import RedisStore
from key_value.encryption import FernetEncryptionWrapper
from cryptography.fernet import Fernet
auth = OAuthProxy(
jwt_signing_key=os.environ["JWT_SIGNING_KEY"],
client_storage=FernetEncryptionWrapper(
key_value=RedisStore(host=os.getenv("REDIS_HOST"), password=os.getenv("REDIS_PASSWORD")),
fernet=Fernet(os.environ["STORAGE_ENCRYPTION_KEY"])
),
upstream_authorization_endpoint="https://github.com/login/oauth/authorize",
upstream_token_endpoint="https://github.com/login/oauth/access_token",
upstream_client_id=os.getenv("GITHUB_CLIENT_ID"),
upstream_client_secret=os.getenv("GITHUB_CLIENT_SECRET"),
enable_consent_screen=True # CRITICAL: Prevents confused deputy attacks
)
mcp = FastMCP("GitHub Auth", auth=auth)
OAuth Proxy Features: Token factory pattern (issues own JWTs), consent screens (prevents bypass), PKCE support, RFC 7662 token introspection
Supported Providers: GitHub, Google, Azure, AWS Cognito, Discord, Facebook, WorkOS, AuthKit, Descope, Scalekit, OCI (v2.13.1)
Supabase Provider (v2.14.2+):
from fastmcp.auth import SupabaseProvider
auth = SupabaseProvider(
auth_route="/custom-auth", # Custom auth route (new in v2.14.2)
# ... other config
)
Icons, API Integration, Cloud Deployment
Icons: Add to servers, tools, resources, prompts. Use Icon(url, size), data URIs via Icon.from_file() or Image.to_data_uri() (v2.13.1).
API Integration (3 Patterns):
1. Manual: httpx.AsyncClient with base_url/headers/timeout
2. OpenAPI Auto-Gen: FastMCP.from_openapi(spec, client, route_maps) - GET→Resources/Templates, POST/PUT/DELETE→Tools
3. FastAPI Conversion: FastMCP.from_fastapi(app, httpx_client_kwargs)
Cloud Deployment Critical Requirements:
1. ❗ Module-level server named mcp, server, or app
2. PyPI dependencies only in requirements.txt
3. Public GitHub repo (or accessible)
4. Environment variables for config
# ✅ CORRECT: Module-level export
mcp = FastMCP("server") # At module level!
# ❌ WRONG: Function-wrapped
def create_server():
return FastMCP("server") # Too late for cloud!
Deployment: https://fastmcp.cloud → Sign in → Create Project → Select repo → Deploy
Client Config (Claude Desktop):
{"mcpServers": {"my-server": {"url": "https://project.fastmcp.app/mcp", "transport": "http"}}}
30 Common Errors (With Solutions)
Error 1: Missing Server Object
Error: RuntimeError: No server object found at module level
Cause: Server not exported at module level (FastMCP Cloud requirement)
Solution: mcp = FastMCP("server") at module level, not inside functions
Error 2: Async/Await Confusion
Error: RuntimeError: no running event loop, TypeError: object coroutine can't be used in 'await'
Cause: Mixing sync/async incorrectly
Solution: Use async def for tools with await, sync def for non-async code
Error 3: Context Not Injected
Error: TypeError: missing 1 required positional argument: 'context'
Cause: Missing Context type annotation
Solution: async def tool(context: Context) - type hint required!
Error 4: Resource URI Syntax
Error: ValueError: Invalid resource URI: missing scheme
Cause: Resource URI missing scheme prefix
Solution: Use @mcp.resource("data://config") not @mcp.resource("config")
Error 5: Resource Template Parameter Mismatch
Error: TypeError: get_user() missing 1 required positional argument
Cause: Function parameter names don't match URI template
Solution: @mcp.resource("user://{user_id}/profile") → def get_user(user_id: str) - names must match exactly
Error 6: Pydantic Validation Error
Error: ValidationError: value is not a valid integer
Cause: Type hints don't match provided data
Solution: Use Pydantic models: class Params(BaseModel): query: str = Field(min_length=1)
Error 7: Transport/Protocol Mismatch
Error: ConnectionError: Server using different transport
Cause: Client and server using incompatible transports
Solution: Match transports - stdio: mcp.run() + {"command": "python", "args": ["server.py"]}, HTTP: mcp.run(transport="http", port=8000) + {"url": "http://localhost:8000/mcp", "transport": "http"}
HTTP Timeout Issue (Fixed in v2.14.3):
- HTTP transport was defaulting to 5-second timeout instead of MCP's 30-second default (GitHub Issue #2845)
- Tools taking >5 seconds would fail silently in v2.14.2 and earlier
- Solution: Upgrade to fastmcp>=2.14.3 (timeout now respects MCP's 30s default)
Error 8: Import Errors (Editable Package)
Error: ModuleNotFoundError: No module named 'my_package'
Cause: Package not properly installed
Solution: pip install -e . or use absolute imports or export PYTHONPATH="/path/to/project"
Error 9: Deprecation Warnings
Error: DeprecationWarning: 'mcp.settings' is deprecated
Cause: Using old FastMCP v1 API
Solution: Use os.getenv("API_KEY") instead of mcp.settings.get("API_KEY")
Error 10: Port Already in Use
Error: OSError: [Errno 48] Address already in use
Cause: Port 8000 already occupied
Solution: Use different port --port 8001 or kill process lsof -ti:8000 | xargs kill -9
Error 11: Schema Generation Failures
Error: TypeError: Object of type 'ndarray' is not JSON serializable
Cause: Unsupported type hints (NumPy arrays, custom classes)
Solution: Return JSON-compatible types: list[float] or convert: {"values": np_array.tolist()}
Custom Classes Not Supported (Community-sourced):
FastMCP supports all Pydantic-compatible types, but custom classes must be converted to dictionaries or Pydantic models for tool returns:
# ❌ NOT SUPPORTED
class MyCustomClass:
def __init__(self, value: str):
self.value = value
@mcp.tool()
async def get_custom() -> MyCustomClass:
return MyCustomClass("test") # Serialization error
# ✅ SUPPORTED - Use dict or Pydantic
@mcp.tool()
async def get_custom() -> dict[str, str]:
obj = MyCustomClass("test")
return {"value": obj.value}
# OR use Pydantic BaseModel
from pydantic import BaseModel
class MyModel(BaseModel):
value: str
@mcp.tool()
async def get_model() -> MyModel:
return MyModel(value="test") # Works!
OutputSchema $ref Resolution (Fixed in v2.14.2):
- Root-level $ref in outputSchema wasn't being dereferenced (GitHub Issue #2720)
- Caused MCP spec non-compliance and client compatibility issues
- Solution: Upgrade to fastmcp>=2.14.2 (auto-dereferences $ref)
Error 12: JSON Serialization
Error: TypeError: Object of type 'datetime' is not JSON serializable
Cause: Returning non-JSON-serializable objects
Solution: Convert: datetime.now().isoformat(), bytes: .decode('utf-8')
Error 13: Circular Import Errors
Error: ImportError: cannot import name 'X' from partially initialized module
Cause: Circular dependency (common in cloud deployment)
Solution: Use direct imports in __init__.py: from .api_client import APIClient or lazy imports in functions
Error 14: Python Version Compatibility
Error: DeprecationWarning: datetime.utcnow() is deprecated
Cause: Using deprecated Python 3.12+ methods
Solution: Use datetime.now(timezone.utc) instead of datetime.utcnow()
Error 15: Import-Time Execution
Error: RuntimeError: Event loop is closed
Cause: Creating async resources at module import time
Solution: Use lazy initialization - create connection class with async connect() method, call when needed in tools
Error 16: Storage Backend Not Configured
Error: RuntimeError: OAuth tokens lost on restart, ValueError: Cache not persisting
Cause: Using default memory storage in production without persistence
Solution: Use encrypted DiskStore (single instance) or RedisStore (multi-instance) with FernetEncryptionWrapper
Error 17: Lifespan Not Passed to ASGI App
Error: RuntimeError: Database connection never initialized, Warning: MCP lifespan hooks not running
Cause: FastMCP with FastAPI/Starlette without passing lifespan (v2.13.0 requirement)
Solution: app = FastAPI(lifespan=mcp.lifespan) - MUST pass lifespan!
Error 18: Middleware Execution Order Error
Error: RuntimeError: Rate limit not checked before caching
Cause: Incorrect middleware ordering (order matters!)
Solution: ErrorHandling → Timing → Logging → RateLimiting → ResponseCaching (this order)
Error 19: Circular Middleware Dependencies
Error: RecursionError: maximum recursion depth exceeded
Cause: Middleware not calling self.next() or calling incorrectly
Solution: Always call result = await self.next(tool_name, arguments, context) in middleware hooks
Error 20: Import vs Mount Confusion
Error: RuntimeError: Subserver changes not reflected, ValueError: Unexpected tool namespacing
Cause: Using import_server() when mount() was needed (or vice versa)
Solution: import_server() for static bundles (one-time copy), mount() for dynamic composition (live link)
Error 21: Resource Prefix Format Mismatch
Error: ValueError: Resource not found: resource://api/users
Cause: Using wrong resource prefix format
Solution: Path format (default v2.4.0+): resource://prefix/path, Protocol (legacy): prefix+resource://path - set with resource_prefix_format="path"
Error 22: OAuth Proxy Without Consent Screen
Error: SecurityWarning: Authorization bypass possible
Cause: OAuth Proxy without consent screen (security vulnerability)
Solution: Always set enable_consent_screen=True - prevents confused deputy attacks (CRITICAL)
Error 23: Missing JWT Signing Key in Production
Error: ValueError: JWT signing key required for OAuth Proxy
Cause: OAuth Proxy missing jwt_signing_key
Solution: Generate: secrets.token_urlsafe(32), store in FASTMCP_JWT_SIGNING_KEY env var, pass to OAuthProxy(jwt_signing_key=...)
Error 24: Icon Data URI Format Error
Error: ValueError: Invalid data URI format
Cause: Incorrectly formatted data URI for icons
Solution: Use Icon.from_file("/path/icon.png", size="medium") or Image.to_data_uri() (v2.13.1) - don't manually format
Error 25: Lifespan Behavior Change (v2.13.0)
Error: Warning: Lifespan runs per-server, not per-session
Cause: Expecting v2.12 behavior (per-session) in v2.13.0+ (per-server)
Solution: v2.13.0+ lifespans run ONCE per server, not per session - use middleware for per-session logic
Error 26: BearerAuthProvider Removed (v2.14.0)
Error: ImportError: cannot import name 'BearerAuthProvider' from 'fastmcp.auth'
Cause: BearerAuthProvider module removed in v2.14.0
Solution: Use JWTVerifier for token validation or OAuthProxy for full OAuth flows:
# Before (v2.13.x)
from fastmcp.auth import BearerAuthProvider
# After (v2.14.0+)
from fastmcp.auth import JWTVerifier
auth = JWTVerifier(issuer="...", audience="...", public_key="...")
Error 27: Context.get_http_request() Removed (v2.14.0)
Error: AttributeError: 'Context' object has no attribute 'get_http_request'
Cause: Context.get_http_request() method removed in v2.14.0
Solution: Access request info through middleware or use InitializeResult exposed to middleware
Error 28: Image Import Path Changed (v2.14.0)
Error: ImportError: cannot import name 'Image' from 'fastmcp'
Cause: fastmcp.Image top-level import removed in v2.14.0
Solution: Use new import path:
# Before (v2.13.x)
from fastmcp import Image
# After (v2.14.0+)
from fastmcp.utilities import Image
Error 29: FastAPI Mount Path Doubling
Error: Client can't connect to /mcp endpoint, gets 404
Source: GitHub Issue #2961
Cause: Mounting FastMCP at /mcp creates endpoint at /mcp/mcp due to path prefix duplication
Solution: Mount at root / or adjust client config
# ❌ WRONG - Creates /mcp/mcp endpoint
from fastapi import FastAPI
from fastmcp import FastMCP
mcp = FastMCP("server")
app = FastAPI(lifespan=mcp.lifespan)
app.mount("/mcp", mcp) # Endpoint becomes /mcp/mcp
# ✅ CORRECT - Mount at root
app.mount("/", mcp) # Endpoint is /mcp
# ✅ OR adjust client config
# In claude_desktop_config.json:
{"url": "http://localhost:8000/mcp/mcp", "transport": "http"}
Critical: Must also pass lifespan=mcp.lifespan to FastAPI (see Error #17).
Error 30: Background Tasks Fail with "No Active Context" (ASGI Mount)
Error: RuntimeError: No active context found
Source: GitHub Issue #2877
Cause: ContextVar propagation issue when FastMCP mounted in FastAPI/Starlette with background tasks (task=True)
Solution: Upgrade to fastmcp>=2.14.3
# In v2.14.2 and earlier - FAILS
from fastapi import FastAPI
from fastmcp import FastMCP, Context
mcp = FastMCP("server")
app = FastAPI(lifespan=mcp.lifespan)
@mcp.tool(task=True)
async def sample(name: str, ctx: Context) -> dict:
# RuntimeError: No active context found
await ctx.report_progress(1, 1, "Processing")
return {"status": "OK"}
app.mount("/", mcp)
# ✅ FIXED in v2.14.3
# pip install fastmcp>=2.14.3
Note: Related to Error #17 (Lifespan Not Passed to ASGI App).
Production Patterns, Testing, CLI
4 Production Patterns:
1. Utils Module: Single utils.py with Config class, format_success/error helpers
2. Connection Pooling: Singleton httpx.AsyncClient with get_client() class method
3. Retry with Backoff: retry_with_backoff(func, max_retries=3, initial_delay=1.0, exponential_base=2.0)
4. Time-Based Caching: TimeBasedCache(ttl=300) with .get() and .set() methods
Testing:
- Unit: pytest + create_test_client(test_server) + await client.call_tool()
- Integration: Client("server.py") + list_tools() + call_tool() + list_resources()
CLI Commands:
fastmcp dev server.py # Run with inspector
fastmcp install server.py # Install to Claude Desktop
FASTMCP_LOG_LEVEL=DEBUG fastmcp dev # Debug logging
Best Practices: Factory pattern with module-level export, environment config with validation, comprehensive docstrings (LLMs read these!), health check resources
Project Structure:
- Simple: server.py, requirements.txt, .env, README.md
- Production: src/ (server.py, utils.py, tools/, resources/, prompts/), tests/, pyproject.toml
References & Summary
Official: https://github.com/jlowin/fastmcp, https://fastmcp.cloud, https://modelcontextprotocol.io, Context7: /jlowin/fastmcp
Related Skills: openai-api, claude-api, cloudflare-worker-base, typescript-mcp
Package Versions: fastmcp>=2.14.2 (PyPI), Python>=3.10 (3.13 supported in v2.14.1+), httpx, pydantic, py-key-value-aio, cryptography
Last Updated: 2026-01-21
17 Key Takeaways:
1. Module-level server export (FastMCP Cloud)
2. Persistent storage (Disk/Redis) for OAuth/caching
3. Server lifespans for resource management
4. Middleware order: errors → timing → logging → rate limiting → caching
5. Composition: import_server() (static) vs mount() (dynamic)
6. OAuth security: consent screens + encrypted storage + JWT signing
7. Async/await properly (don't block event loop)
8. Structured error handling
9. Avoid circular imports
10. Test locally (fastmcp dev)
11. Environment variables (never hardcode secrets)
12. Comprehensive docstrings (LLMs read!)
13. Production patterns (utils, pooling, retry, caching)
14. OpenAPI auto-generation
15. Health checks + monitoring
16. Background tasks for long-running operations (task=True)
17. Sampling with tools for agentic workflows (ctx.sample(tools=[...]))
Production Readiness: Encrypted storage, 4 auth patterns, 8 middleware types, modular composition, OAuth security (consent screens, PKCE, RFC 7662), response caching, connection pooling, timing middleware, background tasks, agentic sampling, FastAPI/Starlette mounting, v3.0 provider architecture
Prevents 30+ errors. 90-95% token savings.
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.