Use when you have a written implementation plan to execute in a separate session with review checkpoints
2
0
# Install this skill:
npx skills add namesreallyblank/Clorch --skill "search-router"
Install specific skill from multi-skill repository
# Description
Choose the right search tool for each query type
# SKILL.md
name: search-router
description: Choose the right search tool for each query type
user-invocable: false
Search Tool Router
Use the most token-efficient search tool for each query type.
When to Use
- Searching for code patterns
- Finding where something is implemented
- Looking for specific identifiers
- Understanding how code works
Decision Tree
Query Type?
├── CODE EXPLORATION (symbols, call chains, data flow)
│ → TLDR Search - 95% token savings
│ DEFAULT FOR ALL CODE SEARCH - use instead of Grep
│ Examples: "spawn_agent", "DataPoller", "redis usage"
│ Command: cd opc/packages/tldr-code && uv run python scripts/tldr_search.py "query"
│
├── STRUCTURAL (AST patterns)
│ → AST-grep (/ast-grep-find) - ~50 tokens output
│ Examples: "def foo", "class Bar", "import X", "@decorator"
│
├── SEMANTIC (conceptual questions)
│ → TLDR Semantic - 5-layer embeddings (P6)
│ Examples: "how does auth work", "find error handling patterns"
│ Command: tldr semantic search "query"
│
├── LITERAL (exact text, regex)
│ → Grep tool - LAST RESORT
│ Only when TLDR/AST-grep don't apply
│ Examples: error messages, config values, non-code text
│
└── FULL CONTEXT (need complete understanding)
→ Read tool - 1500+ tokens
Last resort after finding the right file
Token Efficiency Comparison
| Tool | Output Size | Best For |
|---|---|---|
| TLDR | ~50-500 | DEFAULT: Code symbols, call graphs, data flow |
| TLDR Semantic | ~100-300 | Conceptual queries (P6, embedding-based) |
| AST-grep | ~50 tokens | Function/class definitions, imports, decorators |
| Grep | ~200-2000 | LAST RESORT: Non-code text, regex |
| Read | ~1500+ | Full understanding after finding the file |
Examples
# CODE EXPLORATION → TLDR (DEFAULT)
cd opc/packages/tldr-code && uv run python scripts/tldr_search.py "spawn_agent"
cd opc/packages/tldr-code && uv run python scripts/tldr_search.py "redis" --layer call_graph
# STRUCTURAL → AST-grep
/ast-grep-find "async def $FUNC($$$):" --lang python
# SEMANTIC → TLDR Semantic
tldr semantic search "how does authentication work"
# LITERAL → Grep (LAST RESORT - prefer TLDR)
Grep pattern="check_evocation" path=opc/scripts
# FULL CONTEXT → Read (after finding file)
Read file_path=opc/scripts/z3_erotetic.py
Optimal Flow
1. AST-grep: "Find async functions" → 3 file:line matches
2. Read: Top match only → Full understanding
3. Skip: 4 irrelevant files → 6000 tokens saved
Related Skills
/tldr-search- DEFAULT - Code exploration with 95% token savings/ast-grep-find- Structural code search/morph-search- Fast text search
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Amp
Antigravity
Claude Code
Clawdbot
Codex
Cursor
Droid
Gemini CLI
GitHub Copilot
Goose
Kilo Code
Kiro CLI
OpenCode
Roo Code
Trae
Windsurf
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.