Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add ngxtm/devkit --skill "azure-ai-agents-python"
Install specific skill from multi-skill repository
# Description
Build AI agents using the Azure AI Agents Python SDK (azure-ai-agents). Use when creating agents hosted on Azure AI Foundry with tools (File Search, Code Interpreter, Bing Grounding, Azure AI Search, Function Calling, OpenAPI, MCP), managing threads and messages, implementing streaming responses, or working with vector stores. This is the low-level SDK - for higher-level abstractions, use the agent-framework skill instead.
# SKILL.md
name: azure-ai-agents-python
description: Build AI agents using the Azure AI Agents Python SDK (azure-ai-agents). Use when creating agents hosted on Azure AI Foundry with tools (File Search, Code Interpreter, Bing Grounding, Azure AI Search, Function Calling, OpenAPI, MCP), managing threads and messages, implementing streaming responses, or working with vector stores. This is the low-level SDK - for higher-level abstractions, use the agent-framework skill instead.
Azure AI Agents Python SDK
Build agents hosted on Azure AI Foundry using the azure-ai-agents SDK.
Installation
pip install azure-ai-agents azure-identity
# Or with azure-ai-projects for additional features
pip install azure-ai-projects azure-identity
Environment Variables
PROJECT_ENDPOINT="https://<resource>.services.ai.azure.com/api/projects/<project>"
MODEL_DEPLOYMENT_NAME="gpt-4o-mini"
Authentication
from azure.identity import DefaultAzureCredential
from azure.ai.agents import AgentsClient
credential = DefaultAzureCredential()
client = AgentsClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=credential,
)
Core Workflow
The basic agent lifecycle: create agent → create thread → create message → create run → get response
Minimal Example
import os
from azure.identity import DefaultAzureCredential
from azure.ai.agents import AgentsClient
client = AgentsClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
# 1. Create agent
agent = client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-agent",
instructions="You are a helpful assistant.",
)
# 2. Create thread
thread = client.threads.create()
# 3. Add message
client.messages.create(
thread_id=thread.id,
role="user",
content="Hello!",
)
# 4. Create and process run
run = client.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
# 5. Get response
if run.status == "completed":
messages = client.messages.list(thread_id=thread.id)
for msg in messages:
if msg.role == "assistant":
print(msg.content[0].text.value)
# Cleanup
client.delete_agent(agent.id)
Tools Overview
| Tool | Class | Use Case |
|---|---|---|
| Code Interpreter | CodeInterpreterTool |
Execute Python, generate files |
| File Search | FileSearchTool |
RAG over uploaded documents |
| Bing Grounding | BingGroundingTool |
Web search |
| Azure AI Search | AzureAISearchTool |
Search your indexes |
| Function Calling | FunctionTool |
Call your Python functions |
| OpenAPI | OpenApiTool |
Call REST APIs |
| MCP | McpTool |
Model Context Protocol servers |
See references/tools.md for detailed patterns.
Adding Tools
from azure.ai.agents import CodeInterpreterTool, FileSearchTool
agent = client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="tool-agent",
instructions="You can execute code and search files.",
tools=[CodeInterpreterTool()],
tool_resources={"code_interpreter": {"file_ids": [file.id]}},
)
Function Calling
from azure.ai.agents import FunctionTool, ToolSet
def get_weather(location: str) -> str:
"""Get weather for a location."""
return f"Weather in {location}: 72F, sunny"
functions = FunctionTool(functions=[get_weather])
toolset = ToolSet()
toolset.add(functions)
agent = client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="function-agent",
instructions="Help with weather queries.",
toolset=toolset,
)
# Process run - toolset auto-executes functions
run = client.runs.create_and_process(
thread_id=thread.id,
agent_id=agent.id,
toolset=toolset, # Pass toolset for auto-execution
)
Streaming
from azure.ai.agents import AgentEventHandler
class MyHandler(AgentEventHandler):
def on_message_delta(self, delta):
if delta.text:
print(delta.text.value, end="", flush=True)
def on_error(self, data):
print(f"Error: {data}")
with client.runs.stream(
thread_id=thread.id,
agent_id=agent.id,
event_handler=MyHandler(),
) as stream:
stream.until_done()
See references/streaming.md for advanced patterns.
File Operations
Upload File
file = client.files.upload_and_poll(
file_path="data.csv",
purpose="assistants",
)
Create Vector Store
vector_store = client.vector_stores.create_and_poll(
file_ids=[file.id],
name="my-store",
)
agent = client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
tools=[FileSearchTool()],
tool_resources={"file_search": {"vector_store_ids": [vector_store.id]}},
)
Async Client
from azure.ai.agents.aio import AgentsClient
async with AgentsClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
) as client:
agent = await client.create_agent(...)
# ... async operations
See references/async-patterns.md for async patterns.
Response Format
JSON Mode
agent = client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
response_format={"type": "json_object"},
)
JSON Schema
agent = client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
response_format={
"type": "json_schema",
"json_schema": {
"name": "weather_response",
"schema": {
"type": "object",
"properties": {
"temperature": {"type": "number"},
"conditions": {"type": "string"},
},
"required": ["temperature", "conditions"],
},
},
},
)
Thread Management
Continue Conversation
# Save thread_id for later
thread_id = thread.id
# Resume later
client.messages.create(
thread_id=thread_id,
role="user",
content="Follow-up question",
)
run = client.runs.create_and_process(thread_id=thread_id, agent_id=agent.id)
List Messages
messages = client.messages.list(thread_id=thread.id, order="asc")
for msg in messages:
role = msg.role
content = msg.content[0].text.value
print(f"{role}: {content}")
Best Practices
- Use context managers for async client
- Clean up agents when done:
client.delete_agent(agent.id) - Use
create_and_processfor simple cases, streaming for real-time UX - Pass toolset to run for automatic function execution
- Poll operations use
*_and_pollmethods for long operations
Reference Files
- references/tools.md: All tool types with detailed examples
- references/streaming.md: Event handlers and streaming patterns
- references/async-patterns.md: Async client usage
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.