Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add proffesor-for-testing/agentic-qe --skill "V3 Memory Unification"
Install specific skill from multi-skill repository
# Description
Unify 6+ memory systems into AgentDB with HNSW indexing for 150x-12,500x search improvements. Implements ADR-006 (Unified Memory Service) and ADR-009 (Hybrid Memory Backend).
# SKILL.md
name: "V3 Memory Unification"
description: "Unify 6+ memory systems into AgentDB with HNSW indexing for 150x-12,500x search improvements. Implements ADR-006 (Unified Memory Service) and ADR-009 (Hybrid Memory Backend)."
V3 Memory Unification
What This Skill Does
Consolidates disparate memory systems into unified AgentDB backend with HNSW vector search, achieving 150x-12,500x search performance improvements while maintaining backward compatibility.
Quick Start
# Initialize memory unification
Task("Memory architecture", "Design AgentDB unification strategy", "v3-memory-specialist")
# AgentDB integration
Task("AgentDB setup", "Configure HNSW indexing and vector search", "v3-memory-specialist")
# Data migration
Task("Memory migration", "Migrate SQLite/Markdown to AgentDB", "v3-memory-specialist")
Systems to Unify
Legacy Systems β AgentDB
βββββββββββββββββββββββββββββββββββββββββββ
β β’ MemoryManager (basic operations) β
β β’ DistributedMemorySystem (clustering) β
β β’ SwarmMemory (agent-specific) β
β β’ AdvancedMemoryManager (features) β
β β’ SQLiteBackend (structured) β
β β’ MarkdownBackend (file-based) β
β β’ HybridBackend (combination) β
βββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββ
β π AgentDB with HNSW β
β β’ 150x-12,500x faster search β
β β’ Unified query interface β
β β’ Cross-agent memory sharing β
β β’ SONA learning integration β
βββββββββββββββββββββββββββββββββββββββββββ
Implementation Architecture
Unified Memory Service
class UnifiedMemoryService implements IMemoryBackend {
constructor(
private agentdb: AgentDBAdapter,
private indexer: HNSWIndexer,
private migrator: DataMigrator
) {}
async store(entry: MemoryEntry): Promise<void> {
await this.agentdb.store(entry);
await this.indexer.index(entry);
}
async query(query: MemoryQuery): Promise<MemoryEntry[]> {
if (query.semantic) {
return this.indexer.search(query); // 150x-12,500x faster
}
return this.agentdb.query(query);
}
}
HNSW Vector Search
class HNSWIndexer {
constructor(dimensions: number = 1536) {
this.index = new HNSWIndex({
dimensions,
efConstruction: 200,
M: 16,
speedupTarget: '150x-12500x'
});
}
async search(query: MemoryQuery): Promise<MemoryEntry[]> {
const embedding = await this.embedContent(query.content);
const results = this.index.search(embedding, query.limit || 10);
return this.retrieveEntries(results);
}
}
Migration Strategy
Phase 1: Foundation
// AgentDB adapter setup
const agentdb = new AgentDBAdapter({
dimensions: 1536,
indexType: 'HNSW',
speedupTarget: '150x-12500x'
});
Phase 2: Data Migration
// SQLite β AgentDB
const migrateFromSQLite = async () => {
const entries = await sqlite.getAll();
for (const entry of entries) {
const embedding = await generateEmbedding(entry.content);
await agentdb.store({ ...entry, embedding });
}
};
// Markdown β AgentDB
const migrateFromMarkdown = async () => {
const files = await glob('**/*.md');
for (const file of files) {
const content = await fs.readFile(file, 'utf-8');
await agentdb.store({
id: generateId(),
content,
embedding: await generateEmbedding(content),
metadata: { originalFile: file }
});
}
};
SONA Integration
Learning Pattern Storage
class SONAMemoryIntegration {
async storePattern(pattern: LearningPattern): Promise<void> {
await this.memory.store({
id: pattern.id,
content: pattern.data,
metadata: {
sonaMode: pattern.mode,
reward: pattern.reward,
adaptationTime: pattern.adaptationTime
},
embedding: await this.generateEmbedding(pattern.data)
});
}
async retrieveSimilarPatterns(query: string): Promise<LearningPattern[]> {
return this.memory.query({
type: 'semantic',
content: query,
filters: { type: 'learning_pattern' }
});
}
}
Performance Targets
- Search Speed: 150x-12,500x improvement via HNSW
- Memory Usage: 50-75% reduction through optimization
- Query Latency: <100ms for 1M+ entries
- Cross-Agent Sharing: Real-time memory synchronization
- SONA Integration: <0.05ms adaptation time
Success Metrics
- [ ] All 7 legacy memory systems migrated to AgentDB
- [ ] 150x-12,500x search performance validated
- [ ] 50-75% memory usage reduction achieved
- [ ] Backward compatibility maintained
- [ ] SONA learning patterns integrated
- [ ] Cross-agent memory sharing operational
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.