ramidamolis-alt

ai-orchestrator

0
0
# Install this skill:
npx skills add ramidamolis-alt/agent-skills-workflows --skill "ai-orchestrator"

Install specific skill from multi-skill repository

# Description

🎯 AI Orchestrator - Ultimate natural language to expert prompt translator. Analyzes intent with UltraThink, routes to specialized agents, and verifies execution. Use for: orchestrate, translate commands, delegate work, smart routing, multi-agent coordination.

# SKILL.md


name: ai-orchestrator
description: "🎯 AI Orchestrator - Ultimate natural language to expert prompt translator. Analyzes intent with UltraThink, routes to specialized agents, and verifies execution. Use for: orchestrate, translate commands, delegate work, smart routing, multi-agent coordination."
triggers:
- orchestrate
- translate command
- delegate task
- route to expert
- smart execute


🎯 AI Orchestrator - Ultimate Edition

Natural Language β†’ Intent Analysis β†’ Expert Prompt β†’ Smart Routing β†’ Verified Execution


⚑ Quick Start

User: "ΰΈͺΰΈ£ΰΉ‰ΰΈ²ΰΈ‡ΰΉ€ΰΈ§ΰΉ‡ΰΈšΰΈ‚ΰΈ²ΰΈ’ sneakers"
  ↓
AI Orchestrator:
  1. Intent Analysis (UltraThink): {type: "development", domain: "e-commerce"}
  2. Route Selection: code-architect + docker-expert + security-expert
  3. Expert Prompt: Full technical spec with patterns
  4. Execution: Parallel skill invocation
  5. Verification: Quality gates + Memory save

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    AI ORCHESTRATOR PIPELINE                        β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                    β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”         β”‚
β”‚  β”‚   INTAKE     │───▢│   ANALYZE    │───▢│    ROUTE     β”‚         β”‚
β”‚  β”‚  (Natural    β”‚    β”‚ (UltraThink) β”‚    β”‚  (Skill      β”‚         β”‚
β”‚  β”‚   Language)  β”‚    β”‚   + Memory   β”‚    β”‚   Matcher)   β”‚         β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜         β”‚
β”‚         β”‚                   β”‚                   β”‚                  β”‚
β”‚         β–Ό                   β–Ό                   β–Ό                  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”         β”‚
β”‚  β”‚   Context    β”‚    β”‚  Confidence  β”‚    β”‚   Expert     β”‚         β”‚
β”‚  β”‚   Loading    │───▢│    Gate      │───▢│   Prompt     β”‚         β”‚
β”‚  β”‚ (Memory+Docs)β”‚    β”‚   (>0.7?)    β”‚    β”‚  Generator   β”‚         β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜         β”‚
β”‚                                                 β”‚                  β”‚
β”‚                                                 β–Ό                  β”‚
β”‚                           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚
β”‚                           β”‚        EXECUTION             β”‚        β”‚
β”‚                           β”‚  β”Œβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”    β”‚        β”‚
β”‚                           β”‚  β”‚Skillβ”‚ β”‚Skillβ”‚ β”‚Skillβ”‚    β”‚        β”‚
β”‚                           β”‚  β”‚  A  β”‚ β”‚  B  β”‚ β”‚  C  β”‚    β”‚        β”‚
β”‚                           β”‚  β””β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”˜    β”‚        β”‚
β”‚                           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚
β”‚                                          β”‚                        β”‚
β”‚                                          β–Ό                        β”‚
β”‚                           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚
β”‚                           β”‚   VERIFY + LEARN             β”‚        β”‚
β”‚                           β”‚   Quality Check β†’ Memory     β”‚        β”‚
β”‚                           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚
β”‚                                                                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“Š Intent Classification Matrix

User Pattern Task Type Primary Skills MCP Servers
ΰΈͺΰΈ£ΰΉ‰ΰΈ²ΰΈ‡/build/create web/app development code-architect, docker-expert Context7, MongoDB, Filesystem
ΰΈ«ΰΈ² bug/fix/แก้ debugging debugger, tdd-workflow Memory, UltraThink
ΰΉ€ΰΈˆΰΈ²ΰΈ°/hack/pentest/security security security-expert, ethical-hacking Brave, Memory, UltraThink
ออกแบบ/design/architect architecture code-architect, performance-optimizer UltraThink, Context7
ΰΉ€ΰΈ£ΰΈ΅ΰΈ’ΰΈ™ΰΈ£ΰΈΉΰΉ‰/learn/research learning knowledge-graph Context7, NotebookLM, Memory
optimize/ΰΉ€ΰΈ£ΰΉ‡ΰΈ§ΰΈ‚ΰΈΆΰΉ‰ΰΈ™/performance performance performance-optimizer MongoDB, UltraThink
review/ΰΈ•ΰΈ£ΰΈ§ΰΈˆ review code-review-checklist UltraThink, Sequential
ΰΈͺΰΈ£ΰΉ‰ΰΈ²ΰΈ‡ agent/AI/bot agent-dev langgraph, ai-agents-architect UltraThink, Memory
deploy/ship/launch devops docker-expert, github-workflow Filesystem
test/ΰΈ—ΰΈ”ΰΈͺอบ testing e2e-testing, tdd-workflow Brave, Filesystem

🧠 Phase 1: Intent Analysis

async function analyzeIntent(userInput) {
  // Step 1: Memory Prime - Check for similar past tasks
  const pastPatterns = await mcp_Memory_search_nodes(
    `task pattern: ${extractKeywords(userInput)}`
  );

  // Step 2: Deep Intent Analysis with UltraThink
  const analysis = await mcp_UltraThink_ultrathink({
    thought: `
      # Intent Analysis: "${userInput}"

      ## 1. Primary Goal Extraction
      - What is the user trying to achieve?
      - What is the expected outcome?

      ## 2. Task Classification
      - Type: [development|debugging|security|architecture|learning|performance|review|agent-dev|devops|testing]
      - Domain: [web|mobile|backend|frontend|devops|security|ai|data|general]
      - Complexity: [simple|moderate|complex|enterprise]

      ## 3. Requirements Breakdown
      - Explicit requirements (stated)
      - Implicit requirements (inferred)
      - Constraints and limitations

      ## 4. Skill Routing
      - Primary skill needed
      - Supporting skills
      - MCP servers required

      ## 5. Success Criteria
      - What defines success?
      - Quality metrics
      - Verification approach

      ## Past Patterns Found
      ${pastPatterns.map(p => `- ${p.name}: ${p.observations[0]}`).join('\n')}
    `,
    total_thoughts: 15,
    confidence: null,
    assumptions: [
      { id: "A1", text: "User wants production-quality output", critical: true, confidence: 0.9 },
      { id: "A2", text: "Standard best practices apply", critical: false, confidence: 0.95 }
    ]
  });

  return {
    taskType: analysis.extracted.taskType,
    domain: analysis.extracted.domain,
    complexity: analysis.extracted.complexity,
    requirements: analysis.extracted.requirements,
    skills: analysis.extracted.skills,
    mcpServers: analysis.extracted.mcpServers,
    successCriteria: analysis.extracted.successCriteria,
    confidence: analysis.confidence
  };
}

πŸ”€ Phase 2: Smart Routing

const SKILL_ROUTER = {
  development: {
    primary: ['code-architect'],
    supporting: ['docker-expert', 'security-expert', 'tdd-workflow'],
    mcpServers: ['Context7', 'MongoDB', 'Filesystem', 'Memory']
  },
  debugging: {
    primary: ['debugger'],
    supporting: ['tdd-workflow', 'verification-before-completion'],
    mcpServers: ['Memory', 'UltraThink', 'Filesystem']
  },
  security: {
    primary: ['security-expert', 'ethical-hacking-methodology'],
    supporting: ['debugger'],
    mcpServers: ['Brave', 'Memory', 'UltraThink']
  },
  architecture: {
    primary: ['code-architect'],
    supporting: ['performance-optimizer', 'security-expert'],
    mcpServers: ['UltraThink', 'Context7', 'Memory']
  },
  learning: {
    primary: ['knowledge-graph'],
    supporting: [],
    mcpServers: ['Context7', 'NotebookLM', 'Brave', 'Memory']
  },
  performance: {
    primary: ['performance-optimizer'],
    supporting: ['debugger'],
    mcpServers: ['MongoDB', 'UltraThink', 'Memory']
  },
  review: {
    primary: ['code-review-checklist', 'requesting-code-review'],
    supporting: ['security-expert'],
    mcpServers: ['UltraThink', 'SequentialThinking']
  },
  'agent-dev': {
    primary: ['langgraph', 'ai-agents-architect'],
    supporting: ['autonomous-agents', 'agent-memory-systems'],
    mcpServers: ['UltraThink', 'Memory', 'Context7']
  },
  devops: {
    primary: ['docker-expert', 'github-workflow-automation'],
    supporting: ['security-expert'],
    mcpServers: ['Filesystem', 'Memory']
  },
  testing: {
    primary: ['e2e-testing', 'tdd-workflow'],
    supporting: ['verification-before-completion'],
    mcpServers: ['Brave', 'Filesystem', 'Memory']
  }
};

function selectRoute(intent) {
  const route = SKILL_ROUTER[intent.taskType];

  // Adjust based on complexity
  if (intent.complexity === 'enterprise') {
    route.supporting.push('planning-with-files', 'parallel-agents');
  }

  // Add domain-specific skills
  if (intent.domain === 'ai') {
    route.supporting.push('ai-ml-expert', 'prompt-master');
  }

  return route;
}

✨ Phase 3: Expert Prompt Generation

const EXPERT_PROMPT_TEMPLATES = {

  development: (intent, context) => `
# Expert Development Task

## Role
ΰΈ„ΰΈΈΰΈ“ΰΈ„ΰΈ·ΰΈ­ Principal Software Architect ΰΈ£ΰΈ°ΰΈ”ΰΈ±ΰΈšΰΉ‚ΰΈ₯ก ΰΈœΰΈΉΰΉ‰ΰΉ€ΰΈŠΰΈ΅ΰΉˆΰΈ’ΰΈ§ΰΈŠΰΈ²ΰΈ ${intent.domain}

## Background Context
${context.docsContext ? `### Documentation\n${context.docsContext.substring(0, 2000)}` : ''}
${context.memoryContext?.length ? `### Past Patterns\n${context.memoryContext.map(m => `- ${m.name}`).join('\n')}` : ''}

## Task Requirements
${intent.requirements.explicit.map(r => `- ${r}`).join('\n')}

## Implicit Requirements (Inferred)
${intent.requirements.implicit.map(r => `- ${r}`).join('\n')}

## Technical Standards (MANDATORY)
- TypeScript strict mode
- Comprehensive error handling with recovery
- Input validation at all boundaries (Zod)
- Structured logging with correlation IDs
- Security-first approach (OWASP Top 10)
- Performance optimized (Core Web Vitals targets)
- Full test coverage (unit + integration)

## Architecture Patterns
- Clean Architecture / Hexagonal
- Repository Pattern for data access
- Factory Pattern for object creation
- Strategy Pattern for algorithms
- Circuit Breaker for external calls

## Success Criteria
${intent.successCriteria.map(c => `- [ ] ${c}`).join('\n')}

## Deliverables
1. Implementation with full code
2. Tests
3. Documentation
4. Docker configuration (if applicable)
`,

  debugging: (intent, context) => `
# Expert Debugging Task

## Role
ΰΈ„ΰΈΈΰΈ“ΰΈ„ΰΈ·ΰΈ­ Senior Debugging Specialist ΰΈœΰΈΉΰΉ‰ΰΉ€ΰΈŠΰΈ΅ΰΉˆΰΈ’ΰΈ§ΰΈŠΰΈ²ΰΈ root cause analysis

## Problem Statement
${intent.requirements.explicit[0] || 'Unspecified bug'}

## Past Similar Bugs
${context.memoryContext?.map(m => `- ${m.name}: ${m.observations[0]}`).join('\n') || 'None found'}

## Debugging Methodology
1. **Reproduce** - Confirm the issue exists
2. **Hypothesize** - Generate 3 possible causes
3. **Test** - Systematically eliminate hypotheses
4. **Fix** - Apply minimal, focused fix
5. **Verify** - Confirm fix works and no regressions
6. **Document** - Record for future reference

## Output Requirements
- Root cause identification
- Fix with explanation
- Verification steps
- Memory entry for future reference
`,

  security: (intent, context) => `
# Expert Security Assessment Task

## Role
ΰΈ„ΰΈΈΰΈ“ΰΈ„ΰΈ·ΰΈ­ Senior Security Engineer (OSCP, CEH, CISSP equivalent)

## Target
${intent.requirements.explicit[0] || 'Unspecified target'}

## Scope
${intent.requirements.constraints?.scope || 'To be defined'}

## Methodology: PTES Framework
1. **Reconnaissance** - Information gathering
2. **Scanning** - Vulnerability scanning
3. **Exploitation** - Controlled exploitation (if authorized)
4. **Post-Exploitation** - Assess impact
5. **Reporting** - Document findings

## Ethical Boundaries
- Only authorized testing
- Do not cause damage
- Report all findings responsibly
- Follow rules of engagement

## Output
- Vulnerability report with severity ratings
- Remediation recommendations
- Proof of concept (where appropriate)
`,

  architecture: (intent, context) => `
# Expert Architecture Design Task

## Role
ΰΈ„ΰΈΈΰΈ“ΰΈ„ΰΈ·ΰΈ­ Principal Architect ออกแบบระบบ scale ΰΈ–ΰΈΆΰΈ‡ millions of users

## Design Context
${intent.requirements.explicit.map(r => `- ${r}`).join('\n')}

## Documentation Reference
${context.docsContext?.substring(0, 1500) || 'None loaded'}

## Deliverables
1. **Architecture Diagram** (Mermaid format)
2. **Component Specifications**
3. **Data Flow Diagrams**
4. **API Contracts**
5. **Security Considerations**
6. **Scalability Analysis**
7. **Cost Estimation**

## Quality Attributes (NFRs)
- Performance: Response time < 200ms P95
- Scalability: 10x current load
- Availability: 99.9% uptime
- Security: OWASP compliant
- Maintainability: Clean code, documentation
`,

  learning: (intent, context) => `
# Expert Learning & Research Task

## Role
ΰΈ„ΰΈΈΰΈ“ΰΈ„ΰΈ·ΰΈ­ΰΈ™ΰΈ±ΰΈΰΈ§ΰΈ΄ΰΈˆΰΈ±ΰΈ’ΰΈ£ΰΈ°ΰΈ”ΰΈ±ΰΈš PhD ΰΈœΰΈΉΰΉ‰ΰΉ€ΰΈŠΰΈ΅ΰΉˆΰΈ’ΰΈ§ΰΈŠΰΈ²ΰΈΰΈΰΈ²ΰΈ£ΰΈͺΰΈ±ΰΈ‡ΰΉ€ΰΈ„ΰΈ£ΰΈ²ΰΈ°ΰΈ«ΰΉŒΰΈ„ΰΈ§ΰΈ²ΰΈ‘ΰΈ£ΰΈΉΰΉ‰

## Topic
${intent.requirements.explicit[0] || 'Topic to research'}

## Research Approach
1. Gather information from multiple sources
2. Cross-reference and validate
3. Synthesize key insights
4. Create actionable knowledge

## Sources to Use
- Context7: Framework documentation
- NotebookLM: Research papers
- Brave: Latest articles and tutorials
- Memory: Past learnings

## Output
- Comprehensive summary
- Key insights (bullet points)
- Code examples (if applicable)
- Memory entry for persistence
`
};

async function generateExpertPrompt(intent, userInput) {
  // Load context in parallel
  const [memoryContext, docsContext, webContext] = await Promise.all([
    mcp_Memory_search_nodes(intent.domain + ' ' + intent.taskType),
    intent.domain !== 'general' 
      ? mcp_Context7_query_docs(getLibraryId(intent.domain), userInput) 
      : null,
    intent.complexity === 'complex' || intent.complexity === 'enterprise'
      ? mcp_Brave_brave_web_search(`${intent.domain} best practices 2026`)
      : null
  ]);

  const context = { memoryContext, docsContext, webContext };
  const template = EXPERT_PROMPT_TEMPLATES[intent.taskType];

  if (!template) {
    // Fallback to generic expert prompt
    return generateGenericExpertPrompt(intent, context, userInput);
  }

  return template(intent, context);
}

πŸš€ Phase 4: Execution

async function executeWithSkills(route, expertPrompt, intent) {
  // Load all required skills
  for (const skill of [...route.primary, ...route.supporting]) {
    console.log(`Loading skill: ${skill}`);
    // Skills are auto-loaded by the system
  }

  // Execute primary task
  const result = await executeTask(expertPrompt);

  return result;
}

βœ… Phase 5: Verification & Learning

async function verifyAndLearn(result, intent, userInput) {
  // Verify output quality
  const verification = await mcp_UltraThink_ultrathink({
    thought: `
      # Output Verification

      ## Success Criteria Check
      ${intent.successCriteria.map(c => `- [ ] ${c}`).join('\n')}

      ## Quality Assessment
      - Completeness: Does it address all requirements?
      - Correctness: Is the solution technically sound?
      - Best Practices: Does it follow standards?
      - Security: Any vulnerabilities?
      - Performance: Any obvious issues?

      ## Overall Score
      Rate 1-10 with justification
    `,
    total_thoughts: 5,
    confidence: null
  });

  // Save successful pattern to Memory
  if (verification.confidence > 0.8) {
    await mcp_Memory_create_entities([{
      name: `Orchestration_${intent.taskType}_${Date.now()}`,
      entityType: 'OrchestrationPattern',
      observations: [
        `Input: ${userInput}`,
        `TaskType: ${intent.taskType}`,
        `Domain: ${intent.domain}`,
        `Skills: ${[...route.primary, ...route.supporting].join(', ')}`,
        `Success: ${verification.confidence}`,
        `Timestamp: ${new Date().toISOString()}`
      ]
    }]);

    // Link to related patterns
    await mcp_Memory_create_relations([
      { from: `Orchestration_${intent.taskType}_${Date.now()}`, to: intent.taskType, relationType: 'is_type_of' }
    ]);
  }

  return verification;
}

🎯 Complete Orchestration Example

// User says: "ΰΈͺΰΈ£ΰΉ‰ΰΈ²ΰΈ‡ΰΉ€ΰΈ§ΰΉ‡ΰΈš e-commerce ΰΈ‚ΰΈ²ΰΈ’ sneakers"

async function orchestrate(userInput) {
  console.log("🎯 AI Orchestrator: Starting...");

  // Phase 1: Analyze Intent
  const intent = await analyzeIntent(userInput);
  console.log(`πŸ“Š Intent: ${intent.taskType} (${intent.confidence} confidence)`);

  // Confidence Gate
  if (intent.confidence < 0.6) {
    return { needsClarification: true, questions: intent.uncertainties };
  }

  // Phase 2: Select Route
  const route = selectRoute(intent);
  console.log(`πŸ”€ Route: ${route.primary.join(', ')}`);

  // Phase 3: Generate Expert Prompt
  const expertPrompt = await generateExpertPrompt(intent, userInput);
  console.log("✨ Expert Prompt Generated");

  // Phase 4: Execute
  const result = await executeWithSkills(route, expertPrompt, intent);
  console.log("πŸš€ Execution Complete");

  // Phase 5: Verify & Learn
  const verification = await verifyAndLearn(result, intent, userInput);
  console.log(`βœ… Verification: ${verification.confidence}`);

  return {
    success: verification.confidence > 0.7,
    result,
    verification,
    patternSaved: verification.confidence > 0.8
  };
}

πŸ”§ Integration Points

With Workflows

  • /orchestrate - Direct orchestration command
  • /smart - Auto-detects and uses Orchestrator
  • /god - Ultimate mode with Orchestrator

With Skills

  • Auto-loads relevant skills based on intent
  • Coordinates multi-skill execution
  • Manages skill dependencies

With MCP Servers

  • UltraThink: Deep intent analysis
  • Memory: Pattern storage and retrieval
  • Context7: Documentation loading
  • Brave/DuckDuckGo: Web research
  • NotebookLM: Deep research

⚠️ Anti-Patterns

❌ Don't βœ… Do
Pass raw input to skills Transform to expert prompt first
Skip Memory Prime Always check past patterns
Use single generic prompt Customize per task type
Ignore confidence scores Gate on confidence
Skip verification Always verify output
Forget to save patterns Save successful orchestrations

  • prompt-master - Advanced prompt engineering
  • parallel-agents - Multi-agent execution
  • planning-with-files - Complex task planning
  • knowledge-graph - Memory management
  • omni-skill - Full skill integration

Remember: The Orchestrator is the brain that understands, routes, and verifies.
It transforms simple requests into expert-level executions.

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.