sendaifun

vulnhunter

38
6
# Install this skill:
npx skills add sendaifun/skills --skill "vulnhunter"

Install specific skill from multi-skill repository

# Description

Security vulnerability detection and variant analysis skill. Use when hunting for dangerous APIs, footgun patterns, error-prone configurations, and vulnerability variants across codebases. Combines sharp edges detection with variant hunting methodology.

# SKILL.md


name: vulnhunter
description: Security vulnerability detection and variant analysis skill. Use when hunting for dangerous APIs, footgun patterns, error-prone configurations, and vulnerability variants across codebases. Combines sharp edges detection with variant hunting methodology.


VulnHunter - Security Vulnerability Detection & Analysis

A comprehensive security audit skill for identifying dangerous APIs, footgun patterns, error-prone configurations, and hunting for vulnerability variants across codebases. Inspired by Trail of Bits' sharp-edges and variant-analysis methodologies.

Overview

VulnHunter combines two powerful security analysis techniques:
1. Sharp Edges Detection - Identify error-prone APIs, dangerous defaults, and footgun designs
2. Variant Analysis - Find similar vulnerabilities across codebases using pattern-based analysis

When to Use VulnHunter

Activate this skill when:
- Conducting security code reviews or audits
- Reviewing third-party dependencies for dangerous patterns
- Hunting for variants of known vulnerabilities
- Assessing API design for security footguns
- Pre-audit reconnaissance of unfamiliar codebases

Sharp Edges Detection

Categories of Sharp Edges

1. Dangerous Default Configurations

Look for configurations that are insecure by default:

- CORS: Access-Control-Allow-Origin: *
- Debug modes enabled in production
- Default credentials or API keys
- Permissive file permissions (777, 666)
- SSL/TLS verification disabled
- Insecure deserialization settings

2. Error-Prone APIs

Memory Safety:

// Dangerous: No bounds checking
strcpy(), strcat(), sprintf(), gets()
memcpy() without size validation

// Safer alternatives
strncpy(), strncat(), snprintf(), fgets()
memcpy_s() with explicit size

Cryptography Footguns:

- ECB mode encryption
- MD5/SHA1 for security purposes
- Hardcoded IVs or salts
- Custom crypto implementations
- Random without CSPRNG (Math.random for tokens)

Concurrency Issues:

- Race conditions in file operations
- Time-of-check to time-of-use (TOCTOU)
- Double-checked locking anti-patterns
- Non-atomic increment/decrement operations

3. Language-Specific Footguns

JavaScript/TypeScript:

// Dangerous patterns
eval(), new Function(), setTimeout(string)
innerHTML, outerHTML, document.write()
Object.assign() for deep clone (shallow only!)
== instead of === (type coercion)

Python:

# Dangerous patterns
pickle.loads(untrusted)  # RCE vector
yaml.load(untrusted)     # Use safe_load
exec(), eval()
os.system(), subprocess with shell=True

Rust:

// Patterns requiring extra scrutiny
unsafe { }
.unwrap() in production code
mem::transmute()
raw pointer dereference

Solidity/Smart Contracts:

// High-risk patterns
tx.origin for authentication  // Phishing vulnerable
delegatecall to untrusted     // Storage collision
selfdestruct                  // Permanent destruction
block.timestamp for randomness // Miner manipulable

Sharp Edges Checklist

When reviewing code, systematically check for:

  • [ ] Authentication bypasses - Missing auth checks, default credentials
  • [ ] Authorization flaws - Privilege escalation, IDOR patterns
  • [ ] Injection vectors - SQL, Command, Template, XSS
  • [ ] Cryptographic weaknesses - Weak algorithms, improper key handling
  • [ ] Resource exhaustion - Unbounded loops, memory allocation
  • [ ] Race conditions - TOCTOU, concurrent state modification
  • [ ] Information disclosure - Verbose errors, debug endpoints
  • [ ] Deserialization - Untrusted data unmarshaling
  • [ ] Path traversal - User-controlled file paths
  • [ ] SSRF vectors - User-controlled URLs, redirects

Variant Analysis

The Variant Hunting Process

  1. Identify the Root Cause - Understand WHY a vulnerability exists
  2. Extract the Pattern - What code structure enables it?
  3. Generalize the Pattern - Create regex/AST patterns
  4. Search Codebase - Hunt for similar structures
  5. Validate Findings - Confirm each variant is exploitable

Pattern Extraction Templates

Template 1: Missing Validation Pattern

Original bug: User input flows to SQL query without sanitization
Pattern: [user_input] -> [sink_function] without [validation_function]

Search for:
- Direct database calls with string concatenation
- ORM raw query methods with user parameters
- Similar data flows in adjacent modules

Template 2: Authentication Bypass

Original bug: Endpoint missing auth middleware
Pattern: Route definition without auth decorator/middleware

Search for:
- Routes defined after the vulnerable one
- Similar API patterns in other modules
- Admin/internal endpoints

Template 3: Race Condition

Original bug: Check-then-act without atomicity
Pattern: if (check_condition()) { act_on_condition() }

Search for:
- File existence checks followed by file operations
- Permission checks followed by privileged actions
- Balance checks followed by transfers

Search Strategies

# Find potential SQL injection
grep -rn "execute.*%s" --include="*.py"
grep -rn "query.*\+" --include="*.js"

# Find dangerous deserialize
grep -rn "pickle.loads\|yaml.load\|eval(" --include="*.py"

# Find command injection vectors
grep -rn "os.system\|subprocess.*shell=True" --include="*.py"

Semantic Search (AST-Based)

For more precise matching, use AST-based tools:
- Semgrep - Cross-language semantic grep
- CodeQL - GitHub's semantic analysis
- tree-sitter - Universal parser

Variant Analysis Report Template

## Variant Analysis Report

### Original Finding
- **ID**: FINDING-001
- **Severity**: High
- **Root Cause**: [Description]
- **Affected File**: path/to/file.ext:line

### Pattern Extracted
[Code pattern or regex]

### Variants Discovered

| # | Location | Severity | Status | Notes |
|---|----------|----------|--------|-------|
| 1 | file.ext:42 | High | Confirmed | Same root cause |
| 2 | other.ext:100 | Medium | Suspected | Needs validation |

### Recommendations
[Systematic fix approach]

Workflow

Phase 1: Reconnaissance

  1. Identify technology stack and languages
  2. Map entry points (APIs, CLI, file inputs)
  3. Locate authentication/authorization logic
  4. Find cryptographic operations
  5. Identify external integrations

Phase 2: Sharp Edges Scan

  1. Run through sharp edges checklist
  2. Focus on security-critical paths
  3. Document all suspicious patterns
  4. Cross-reference with known CVEs

Phase 3: Variant Hunting

  1. For each finding, extract pattern
  2. Search for variants systematically
  3. Validate each potential variant
  4. Assess aggregate risk

Phase 4: Reporting

  1. Consolidate findings by category
  2. Assign severity ratings
  3. Provide remediation guidance
  4. Highlight systemic issues

Integration with Static Analysis

Semgrep Rules for Common Patterns

# Example: Detect SQL injection in Python
rules:
  - id: sql-injection-format
    patterns:
      - pattern: $CURSOR.execute($QUERY % ...)
    message: "Potential SQL injection via string formatting"
    severity: ERROR
    languages: [python]

CodeQL Queries

// Find tainted data flowing to dangerous sinks
import python
import semmle.python.dataflow.TaintTracking

from DataFlow::PathNode source, DataFlow::PathNode sink
where TaintTracking::localTaint(source.getNode(), sink.getNode())
  and sink.getNode().asExpr().(Call).getTarget().getName() = "execute"
select sink, source, sink, "Tainted input reaches SQL execution"

Examples

See the /examples folder for:
- Real-world sharp edges examples by language
- Variant analysis case studies
- Pattern extraction walkthroughs

Resources

  • resources/sharp-edges-catalog.md - Comprehensive catalog of dangerous patterns
  • resources/variant-patterns.md - Common vulnerability pattern templates
  • templates/variant-report.md - Report template for variant analysis

Guidelines

  1. Always verify - Don't report theoretical issues as confirmed vulnerabilities
  2. Context matters - A pattern may be safe in one context, dangerous in another
  3. Prioritize exploitability - Focus on patterns that lead to real impact
  4. Document assumptions - Note any threat model assumptions
  5. Systemic over point fixes - Recommend architectural improvements when patterns repeat

Skill Files

vulnhunter/
├── SKILL.md                          # This file
├── resources/
│   ├── sharp-edges-catalog.md        # Categorized dangerous patterns
│   └── variant-patterns.md           # Vulnerability pattern templates
├── examples/
│   ├── smart-contracts/              # Solidity/blockchain examples
│   ├── web-apps/                     # Web application examples
│   └── native-code/                  # C/C++/Rust examples
├── templates/
│   └── variant-report.md             # Analysis report template
└── docs/
    └── methodology.md                # Detailed methodology guide

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.