Build or update the BlueBubbles external channel plugin for Moltbot (extension package, REST...
npx skills add silvainfm/claude-skills --skill "streamlit"
Install specific skill from multi-skill repository
# Description
Fast Python framework for building interactive web apps, dashboards, and data visualizations without HTML/CSS/JavaScript. Use when user wants to create data apps, ML demos, dashboards, data exploration tools, or interactive visualizations. Transforms Python scripts into web apps in minutes with automatic UI updates.
# SKILL.md
name: streamlit
description: Fast Python framework for building interactive web apps, dashboards, and data visualizations without HTML/CSS/JavaScript. Use when user wants to create data apps, ML demos, dashboards, data exploration tools, or interactive visualizations. Transforms Python scripts into web apps in minutes with automatic UI updates.
Streamlit
Overview
Streamlit is a Python framework for rapidly building and deploying interactive web applications for data science and machine learning. Create beautiful web apps with just Python - no frontend development experience required. Apps automatically update in real-time as code changes.
When to Use This Skill
Activate when the user:
- Wants to build a web app, dashboard, or data visualization tool
- Mentions Streamlit explicitly
- Needs to create an ML/AI demo or prototype
- Wants to visualize data interactively
- Asks for a data exploration tool
- Needs interactive widgets (sliders, buttons, file uploads)
- Wants to share analysis results with stakeholders
Installation and Setup
Check if Streamlit is installed:
python3 -c "import streamlit; print(streamlit.__version__)"
If not installed:
pip3 install streamlit
Create and run your first app:
# Create app.py with Streamlit code
streamlit run app.py
The app opens automatically in your browser at http://localhost:8501
Basic App Structure
Every Streamlit app follows this simple pattern:
import streamlit as st
# Set page configuration (must be first Streamlit command)
st.set_page_config(
page_title="My App",
page_icon="📊",
layout="wide"
)
# Title and description
st.title("My Data App")
st.write("Welcome to my interactive dashboard!")
# Your app code here
# Streamlit automatically reruns from top to bottom when widgets change
Core Capabilities
1. Displaying Text and Data
import streamlit as st, pandas as pd
# Text elements
st.title("Main Title")
st.header("Section Header")
st.subheader("Subsection Header")
st.text("Fixed-width text")
st.markdown("**Bold** and *italic* text")
st.caption("Small caption text")
# Code blocks
st.code("""
def hello():
print("Hello, World!")
""", language="python")
# Display data
df = pd.DataFrame({
'Column A': [1, 2, 3],
'Column B': [4, 5, 6]
})
st.dataframe(df) # Interactive table
st.table(df) # Static table
st.json({'key': 'value'}) # JSON data
# Metrics
st.metric(
label="Revenue",
value="$1,234",
delta="12%"
)
2. Interactive Widgets
import streamlit as st
# Text input
name = st.text_input("Enter your name")
email = st.text_input("Email", type="default")
password = st.text_input("Password", type="password")
text = st.text_area("Long text", height=100)
# Numbers
age = st.number_input("Age", min_value=0, max_value=120, value=25)
slider_val = st.slider("Select a value", 0, 100, 50)
range_val = st.slider("Select range", 0, 100, (25, 75))
# Selections
option = st.selectbox("Choose one", ["Option 1", "Option 2", "Option 3"])
options = st.multiselect("Choose multiple", ["A", "B", "C", "D"])
radio = st.radio("Pick one", ["Yes", "No", "Maybe"])
# Checkboxes
agree = st.checkbox("I agree to terms")
show_data = st.checkbox("Show raw data")
# Buttons
if st.button("Click me"):
st.write("Button clicked!")
# Date and time
date = st.date_input("Select date")
time = st.time_input("Select time")
# File upload
uploaded_file = st.file_uploader("Choose a file", type=['csv', 'xlsx', 'txt'])
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
st.dataframe(df)
# Download button
st.download_button(
label="Download data",
data=df.to_csv(index=False),
file_name="data.csv",
mime="text/csv"
)
3. Charts and Visualizations
import streamlit as st
import pandas as pd, numpy as np, matplotlib.pyplot as plt
import plotly.express as px
# Sample data
df = pd.DataFrame({
'x': range(10),
'y': np.random.randn(10)
})
# Streamlit native charts
st.line_chart(df)
st.area_chart(df)
st.bar_chart(df)
# Scatter plot with map data
map_data = pd.DataFrame(
np.random.randn(100, 2) / [50, 50] + [37.76, -122.4],
columns=['lat', 'lon']
)
st.map(map_data)
# Matplotlib
fig, ax = plt.subplots()
ax.plot(df['x'], df['y'])
ax.set_title("Matplotlib Chart")
st.pyplot(fig)
# Plotly (interactive)
fig = px.scatter(df, x='x', y='y', title="Interactive Plotly Chart")
st.plotly_chart(fig, use_container_width=True)
# Altair, Bokeh, and other libraries also supported
4. Layout and Containers
import streamlit as st
# Columns
col1, col2, col3 = st.columns(3)
with col1:
st.header("Column 1")
st.write("Content here")
with col2:
st.header("Column 2")
st.write("More content")
with col3:
st.header("Column 3")
st.write("Even more")
# Tabs
tab1, tab2, tab3 = st.tabs(["Overview", "Data", "Settings"])
with tab1:
st.write("Overview content")
with tab2:
st.write("Data content")
with tab3:
st.write("Settings content")
# Expander (collapsible section)
with st.expander("Click to expand"):
st.write("Hidden content that can be expanded")
# Container
with st.container():
st.write("This is inside a container")
st.write("Another line")
# Sidebar
st.sidebar.title("Sidebar")
st.sidebar.selectbox("Choose option", ["A", "B", "C"])
st.sidebar.slider("Sidebar slider", 0, 100)
5. Status and Progress
import streamlit as st, time
# Success, info, warning, error messages
st.success("Success! Everything worked.")
st.info("This is an informational message.")
st.warning("This is a warning.")
st.error("This is an error message.")
# Progress bar
progress_bar = st.progress(0)
for i in range(100):
time.sleep(0.01)
progress_bar.progress(i + 1)
# Spinner (loading indicator)
with st.spinner("Processing..."):
time.sleep(3)
st.success("Done!")
# Balloons (celebration)
st.balloons()
# Snow (celebration)
# st.snow()
6. Caching for Performance
import streamlit as st, pandas as pd, time
# Cache data loading (persists across reruns)
@st.cache_data
def load_data():
time.sleep(2) # Simulate slow data load
return pd.read_csv('large_file.csv')
# Cache resource (connections, models)
@st.cache_resource
def load_model():
# Load ML model (expensive operation)
return load_my_model()
# Use cached data
df = load_data() # Only loads once, then cached
model = load_model() # Cached globally
st.write(f"Loaded {len(df)} rows")
7. Session State (Persistent Data)
import streamlit as st
# Initialize session state
if 'count' not in st.session_state:
st.session_state.count = 0
# Increment counter
if st.button("Increment"):
st.session_state.count += 1
st.write(f"Count: {st.session_state.count}")
# Store user data across reruns
if 'user_data' not in st.session_state:
st.session_state.user_data = {}
name = st.text_input("Name")
if name:
st.session_state.user_data['name'] = name
st.write(f"Hello, {st.session_state.user_data['name']}!")
Common Patterns
Pattern 1: Data Dashboard
import streamlit as st, pandas as pd, plotly.express as px
st.set_page_config(page_title="Sales Dashboard", layout="wide")
# Sidebar filters
st.sidebar.header("Filters")
date_range = st.sidebar.date_input("Date Range", [])
category = st.sidebar.multiselect("Category", ["A", "B", "C"])
# Load data
@st.cache_data
def load_sales_data():
return pd.read_csv('sales_data.csv')
df = load_sales_data()
# Apply filters
if date_range:
df = df[df['date'].between(date_range[0], date_range[1])]
if category:
df = df[df['category'].isin(category)]
# Metrics row
col1, col2, col3, col4 = st.columns(4)
col1.metric("Total Revenue", f"${df['revenue'].sum():,.0f}")
col2.metric("Orders", f"{len(df):,}")
col3.metric("Avg Order", f"${df['revenue'].mean():.2f}")
col4.metric("Top Product", df['product'].mode()[0])
# Charts
col1, col2 = st.columns(2)
with col1:
st.subheader("Revenue by Category")
fig = px.bar(df.groupby('category')['revenue'].sum().reset_index(),
x='category', y='revenue')
st.plotly_chart(fig, use_container_width=True)
with col2:
st.subheader("Revenue Trend")
fig = px.line(df.groupby('date')['revenue'].sum().reset_index(),
x='date', y='revenue')
st.plotly_chart(fig, use_container_width=True)
# Data table
with st.expander("View Raw Data"):
st.dataframe(df)
Pattern 2: Data Explorer
import streamlit as st, pandas as pd, plotly.express as px
st.title("📊 Data Explorer")
# File upload
uploaded_file = st.file_uploader("Upload CSV", type=['csv'])
if uploaded_file:
df = pd.read_csv(uploaded_file)
# Show basic info
st.subheader("Dataset Overview")
col1, col2, col3 = st.columns(3)
col1.metric("Rows", len(df))
col2.metric("Columns", len(df.columns))
col3.metric("Memory", f"{df.memory_usage(deep=True).sum() / 1024**2:.2f} MB")
# Column selection
st.subheader("Explore Data")
columns = st.multiselect("Select columns", df.columns.tolist(), default=df.columns.tolist()[:5])
if columns:
st.dataframe(df[columns])
# Statistics
st.subheader("Statistics")
st.write(df[columns].describe())
# Visualization
st.subheader("Visualize")
col1, col2 = st.columns(2)
with col1:
x_col = st.selectbox("X-axis", columns)
with col2:
y_col = st.selectbox("Y-axis", columns)
chart_type = st.radio("Chart Type", ["Scatter", "Line", "Bar"])
if chart_type == "Scatter":
fig = px.scatter(df, x=x_col, y=y_col)
elif chart_type == "Line":
fig = px.line(df, x=x_col, y=y_col)
else:
fig = px.bar(df, x=x_col, y=y_col)
st.plotly_chart(fig, use_container_width=True)
Pattern 3: Multi-Page App
Create a multi-page app with file structure:
app/
├── main.py
└── pages/
├── 1_📊_Dashboard.py
├── 2_📈_Analytics.py
└── 3_⚙️_Settings.py
Main page (main.py):
import streamlit as st
st.set_page_config(page_title="Multi-Page App", page_icon="🏠")
st.title("Welcome to My App")
st.sidebar.success("Select a page above.")
st.markdown("""
This is the home page. Navigate using the sidebar.
""")
Pages automatically appear in the sidebar. Each page is a separate Python file.
Form Handling
import streamlit as st
# Forms prevent rerun on every widget change
with st.form("my_form"):
st.write("Fill out the form")
name = st.text_input("Name")
age = st.number_input("Age", min_value=0, max_value=120)
favorite_color = st.selectbox("Favorite Color", ["Red", "Green", "Blue"])
# Form submit button
submitted = st.form_submit_button("Submit")
if submitted:
st.write(f"Name: {name}")
st.write(f"Age: {age}")
st.write(f"Color: {favorite_color}")
Best Practices
- Use caching - Cache expensive operations with
@st.cache_dataand@st.cache_resource - Session state for persistence - Use
st.session_stateto persist data across reruns - Organize with containers - Use columns, tabs, and expanders for clean layouts
- Forms for multiple inputs - Prevent reruns with forms when collecting multiple inputs
- Wide layout for dashboards - Use
st.set_page_config(layout="wide")for dashboards - Sidebar for controls - Put filters and settings in the sidebar
- Progress indicators - Show spinners for long operations
Common Issues
Issue: App reruns on every interaction
Use st.form() to batch inputs or st.session_state to control behavior.
Issue: Slow performance
Cache expensive operations:
@st.cache_data
def expensive_computation(param):
# Your code here
return result
Issue: State not persisting
Use session state:
if 'my_var' not in st.session_state:
st.session_state.my_var = initial_value
Resources
- references/api_reference.md: Quick reference for common Streamlit components
- Official docs: https://docs.streamlit.io/
- API reference: https://docs.streamlit.io/develop/api-reference
- Gallery: https://streamlit.io/gallery
- Community: https://discuss.streamlit.io/
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.