Use when you have a written implementation plan to execute in a separate session with review checkpoints
npx skills add Bbeierle12/Skill-MCP-Claude --skill "shader-sdf"
Install specific skill from multi-skill repository
# Description
Signed Distance Functions (SDFs) in GLSL—2D/3D shape primitives, boolean operations (union, intersection, subtraction), smooth blending, repetition, and raymarching fundamentals. Use when creating procedural shapes, text effects, smooth morphing, or raymarched 3D scenes.
# SKILL.md
name: shader-sdf
description: Signed Distance Functions (SDFs) in GLSL—2D/3D shape primitives, boolean operations (union, intersection, subtraction), smooth blending, repetition, and raymarching fundamentals. Use when creating procedural shapes, text effects, smooth morphing, or raymarched 3D scenes.
Shader SDFs
Signed Distance Functions return the distance from a point to a shape's surface. Negative = inside, positive = outside, zero = on surface.
Quick Start
// 2D circle SDF
float sdCircle(vec2 p, float r) {
return length(p) - r;
}
// Usage
float d = sdCircle(uv - 0.5, 0.3);
// Render
vec3 color = d < 0.0 ? vec3(1.0) : vec3(0.0); // Hard edge
vec3 color = vec3(smoothstep(0.01, 0.0, d)); // Soft edge
vec3 color = vec3(smoothstep(0.02, 0.0, abs(d))); // Outline
2D Primitives
Circle
float sdCircle(vec2 p, float r) {
return length(p) - r;
}
Box
float sdBox(vec2 p, vec2 b) {
vec2 d = abs(p) - b;
return length(max(d, 0.0)) + min(max(d.x, d.y), 0.0);
}
Rounded Box
float sdRoundedBox(vec2 p, vec2 b, float r) {
vec2 d = abs(p) - b + r;
return length(max(d, 0.0)) + min(max(d.x, d.y), 0.0) - r;
}
Line Segment
float sdSegment(vec2 p, vec2 a, vec2 b) {
vec2 pa = p - a;
vec2 ba = b - a;
float h = clamp(dot(pa, ba) / dot(ba, ba), 0.0, 1.0);
return length(pa - ba * h);
}
Triangle
float sdTriangle(vec2 p, vec2 p0, vec2 p1, vec2 p2) {
vec2 e0 = p1 - p0, e1 = p2 - p1, e2 = p0 - p2;
vec2 v0 = p - p0, v1 = p - p1, v2 = p - p2;
vec2 pq0 = v0 - e0 * clamp(dot(v0, e0) / dot(e0, e0), 0.0, 1.0);
vec2 pq1 = v1 - e1 * clamp(dot(v1, e1) / dot(e1, e1), 0.0, 1.0);
vec2 pq2 = v2 - e2 * clamp(dot(v2, e2) / dot(e2, e2), 0.0, 1.0);
float s = sign(e0.x * e2.y - e0.y * e2.x);
vec2 d = min(min(
vec2(dot(pq0, pq0), s * (v0.x * e0.y - v0.y * e0.x)),
vec2(dot(pq1, pq1), s * (v1.x * e1.y - v1.y * e1.x))),
vec2(dot(pq2, pq2), s * (v2.x * e2.y - v2.y * e2.x)));
return -sqrt(d.x) * sign(d.y);
}
Ring
float sdRing(vec2 p, float r, float thickness) {
return abs(length(p) - r) - thickness;
}
Polygon (N-sided)
float sdPolygon(vec2 p, float r, int n) {
float a = atan(p.x, p.y) + 3.141592;
float s = 6.283185 / float(n);
return cos(floor(0.5 + a / s) * s - a) * length(p) - r;
}
Star
float sdStar(vec2 p, float r, int n, float m) {
float an = 3.141592 / float(n);
float en = 3.141592 / m;
vec2 acs = vec2(cos(an), sin(an));
vec2 ecs = vec2(cos(en), sin(en));
float bn = mod(atan(p.x, p.y), 2.0 * an) - an;
p = length(p) * vec2(cos(bn), abs(sin(bn)));
p -= r * acs;
p += ecs * clamp(-dot(p, ecs), 0.0, r * acs.y / ecs.y);
return length(p) * sign(p.x);
}
3D Primitives
Sphere
float sdSphere(vec3 p, float r) {
return length(p) - r;
}
Box
float sdBox(vec3 p, vec3 b) {
vec3 q = abs(p) - b;
return length(max(q, 0.0)) + min(max(q.x, max(q.y, q.z)), 0.0);
}
Rounded Box
float sdRoundBox(vec3 p, vec3 b, float r) {
vec3 q = abs(p) - b;
return length(max(q, 0.0)) + min(max(q.x, max(q.y, q.z)), 0.0) - r;
}
Cylinder
float sdCylinder(vec3 p, float h, float r) {
vec2 d = abs(vec2(length(p.xz), p.y)) - vec2(r, h);
return min(max(d.x, d.y), 0.0) + length(max(d, 0.0));
}
Torus
float sdTorus(vec3 p, vec2 t) {
vec2 q = vec2(length(p.xz) - t.x, p.y);
return length(q) - t.y;
}
Cone
float sdCone(vec3 p, vec2 c, float h) {
vec2 q = h * vec2(c.x / c.y, -1.0);
vec2 w = vec2(length(p.xz), p.y);
vec2 a = w - q * clamp(dot(w, q) / dot(q, q), 0.0, 1.0);
vec2 b = w - q * vec2(clamp(w.x / q.x, 0.0, 1.0), 1.0);
float k = sign(q.y);
float d = min(dot(a, a), dot(b, b));
float s = max(k * (w.x * q.y - w.y * q.x), k * (w.y - q.y));
return sqrt(d) * sign(s);
}
Capsule
float sdCapsule(vec3 p, vec3 a, vec3 b, float r) {
vec3 pa = p - a, ba = b - a;
float h = clamp(dot(pa, ba) / dot(ba, ba), 0.0, 1.0);
return length(pa - ba * h) - r;
}
Plane
float sdPlane(vec3 p, vec3 n, float h) {
return dot(p, n) + h;
}
Boolean Operations
Union (OR)
float opUnion(float d1, float d2) {
return min(d1, d2);
}
Intersection (AND)
float opIntersection(float d1, float d2) {
return max(d1, d2);
}
Subtraction (NOT)
float opSubtraction(float d1, float d2) {
return max(-d1, d2);
}
Smooth Union
float opSmoothUnion(float d1, float d2, float k) {
float h = clamp(0.5 + 0.5 * (d2 - d1) / k, 0.0, 1.0);
return mix(d2, d1, h) - k * h * (1.0 - h);
}
Smooth Intersection
float opSmoothIntersection(float d1, float d2, float k) {
float h = clamp(0.5 - 0.5 * (d2 - d1) / k, 0.0, 1.0);
return mix(d2, d1, h) + k * h * (1.0 - h);
}
Smooth Subtraction
float opSmoothSubtraction(float d1, float d2, float k) {
float h = clamp(0.5 - 0.5 * (d2 + d1) / k, 0.0, 1.0);
return mix(d2, -d1, h) + k * h * (1.0 - h);
}
Transformations
Translation
// Move shape by offset
float d = sdCircle(p - offset, r);
Rotation (2D)
mat2 rot2D(float a) {
float s = sin(a), c = cos(a);
return mat2(c, -s, s, c);
}
// Rotate point around origin
vec2 rotatedP = rot2D(angle) * p;
float d = sdBox(rotatedP, size);
Rotation (3D)
mat3 rotateX(float a) {
float s = sin(a), c = cos(a);
return mat3(1, 0, 0, 0, c, -s, 0, s, c);
}
mat3 rotateY(float a) {
float s = sin(a), c = cos(a);
return mat3(c, 0, s, 0, 1, 0, -s, 0, c);
}
mat3 rotateZ(float a) {
float s = sin(a), c = cos(a);
return mat3(c, -s, 0, s, c, 0, 0, 0, 1);
}
Scale
// Scale shape
float d = sdCircle(p / scale, r) * scale;
Symmetry
// Mirror across Y axis
p.x = abs(p.x);
float d = sdCircle(p - vec2(0.3, 0.0), 0.1);
Domain Operations
Repetition (Infinite)
float opRepeat(vec2 p, vec2 spacing) {
vec2 q = mod(p + spacing * 0.5, spacing) - spacing * 0.5;
return sdCircle(q, 0.1);
}
Repetition (Limited)
float opRepeatLimited(vec3 p, float spacing, vec3 count) {
vec3 q = p - spacing * clamp(round(p / spacing), -count, count);
return sdSphere(q, 0.1);
}
Twist
float opTwist(vec3 p, float k) {
float c = cos(k * p.y);
float s = sin(k * p.y);
mat2 m = mat2(c, -s, s, c);
vec3 q = vec3(m * p.xz, p.y);
return sdBox(q, vec3(0.5));
}
Bend
float opBend(vec3 p, float k) {
float c = cos(k * p.x);
float s = sin(k * p.x);
mat2 m = mat2(c, -s, s, c);
vec3 q = vec3(m * p.xy, p.z);
return sdBox(q, vec3(0.5));
}
Onion (Hollow)
float opOnion(float d, float thickness) {
return abs(d) - thickness;
}
Round
float opRound(float d, float r) {
return d - r;
}
2D Rendering Techniques
Anti-aliased Edge
float aa = fwidth(d) * 1.5;
float mask = smoothstep(aa, -aa, d);
Outline
float outline = smoothstep(thickness + aa, thickness - aa, abs(d));
Glow
float glow = exp(-d * falloff);
Drop Shadow
float shadow = smoothstep(0.0, blur, sdShape(p - shadowOffset));
3D Raymarching (Basic)
float map(vec3 p) {
float d = sdSphere(p, 1.0);
d = opSmoothUnion(d, sdBox(p - vec3(1.0, 0.0, 0.0), vec3(0.5)), 0.2);
return d;
}
vec3 calcNormal(vec3 p) {
vec2 e = vec2(0.001, 0.0);
return normalize(vec3(
map(p + e.xyy) - map(p - e.xyy),
map(p + e.yxy) - map(p - e.yxy),
map(p + e.yyx) - map(p - e.yyx)
));
}
float raymarch(vec3 ro, vec3 rd) {
float t = 0.0;
for (int i = 0; i < 100; i++) {
vec3 p = ro + rd * t;
float d = map(p);
if (d < 0.001) break;
if (t > 100.0) break;
t += d;
}
return t;
}
void mainImage(out vec4 fragColor, in vec2 fragCoord) {
vec2 uv = (fragCoord - 0.5 * iResolution.xy) / iResolution.y;
vec3 ro = vec3(0.0, 0.0, 3.0); // Ray origin
vec3 rd = normalize(vec3(uv, -1.0)); // Ray direction
float t = raymarch(ro, rd);
vec3 color = vec3(0.0);
if (t < 100.0) {
vec3 p = ro + rd * t;
vec3 n = calcNormal(p);
vec3 light = normalize(vec3(1.0, 1.0, 1.0));
float diff = max(dot(n, light), 0.0);
color = vec3(diff);
}
fragColor = vec4(color, 1.0);
}
File Structure
shader-sdf/
├── SKILL.md
├── references/
│ ├── 2d-primitives.md # All 2D shapes
│ ├── 3d-primitives.md # All 3D shapes
│ └── operations.md # All operations
└── scripts/
├── primitives/
│ ├── 2d.glsl # 2D shape functions
│ └── 3d.glsl # 3D shape functions
├── operations.glsl # Boolean & domain ops
└── examples/
├── logo.glsl # 2D logo example
└── raymarch.glsl # 3D raymarching example
Reference
references/2d-primitives.md— Complete 2D shape libraryreferences/3d-primitives.md— Complete 3D shape libraryreferences/operations.md— All boolean and domain operations
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.