Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add jiatastic/open-python-skills --skill "logfire"
Install specific skill from multi-skill repository
# Description
>
# SKILL.md
name: logfire
description: >
Structured observability with Pydantic Logfire and OpenTelemetry. Use when: (1) Adding traces/logs to Python APIs,
(2) Instrumenting FastAPI, HTTPX, SQLAlchemy, or LLMs, (3) Setting up service metadata,
(4) Configuring sampling or scrubbing sensitive data, (5) Testing observability code.
Logfire
Structured observability for Python using Pydantic Logfire - fast setup, powerful features, OpenTelemetry-compatible.
Quick Start
uv pip install logfire
import logfire
logfire.configure(service_name="my-api", service_version="1.0.0")
logfire.info("Application started")
Core Patterns
1. Service Configuration
Always set service metadata at startup:
import logfire
logfire.configure(
service_name="backend",
service_version="1.0.0",
environment="production",
console=False, # Disable console output in production
send_to_logfire=True, # Send to Logfire platform
)
2. Framework Instrumentation
Instrument frameworks before creating clients/apps:
import logfire
from fastapi import FastAPI
# Configure FIRST
logfire.configure(service_name="backend")
# Then instrument
logfire.instrument_fastapi()
logfire.instrument_httpx()
logfire.instrument_sqlalchemy()
# Then create app
app = FastAPI()
3. Log Levels and Structured Logging
# All log levels (trace → fatal)
logfire.trace("Detailed trace", step=1)
logfire.debug("Debug context", variable=locals())
logfire.info("User action", action="login", success=True)
logfire.notice("Important event", event_type="milestone")
logfire.warn("Potential issue", threshold_exceeded=True)
logfire.error("Operation failed", error_code=500)
logfire.fatal("Critical failure", component="database")
# Python 3.11+ f-string magic (auto-extracts variables)
user_id = 123
status = "active"
logfire.info(f"User {user_id} status: {status}")
# Equivalent to: logfire.info("User {user_id}...", user_id=user_id, status=status)
# Exception logging with automatic traceback
try:
risky_operation()
except Exception:
logfire.exception("Operation failed", context="extra_info")
4. Manual Spans
# Spans for tracing operations
with logfire.span("Process order {order_id}", order_id="ORD-123"):
logfire.info("Validating cart")
# ... processing logic
logfire.info("Order complete")
# Dynamic span attributes
with logfire.span("Database query") as span:
results = execute_query()
span.set_attribute("result_count", len(results))
span.message = f"Query returned {len(results)} results"
5. Custom Metrics
# Counter - monotonically increasing
request_counter = logfire.metric_counter("http.requests", unit="1")
request_counter.add(1, {"endpoint": "/api/users", "method": "GET"})
# Gauge - current value
temperature = logfire.metric_gauge("temperature", unit="°C")
temperature.set(23.5)
# Histogram - distribution of values
latency = logfire.metric_histogram("request.duration", unit="ms")
latency.record(45.2, {"endpoint": "/api/data"})
6. LLM Observability
import logfire
from pydantic_ai import Agent
logfire.configure()
logfire.instrument_pydantic_ai() # Traces all agent interactions
agent = Agent("openai:gpt-4o", system_prompt="You are helpful.")
result = agent.run_sync("Hello!")
7. Suppress Noisy Instrumentation
# Suppress entire scope (e.g., noisy library)
logfire.suppress_scopes("google.cloud.bigquery.opentelemetry_tracing")
# Suppress specific code block
with logfire.suppress_instrumentation():
client.get("https://internal-healthcheck.local") # Not traced
8. Sensitive Data Scrubbing
import logfire
# Add custom patterns to scrub
logfire.configure(
scrubbing=logfire.ScrubbingOptions(
extra_patterns=["api_key", "secret", "token"]
)
)
# Custom callback for fine-grained control
def scrubbing_callback(match: logfire.ScrubMatch):
if match.path == ("attributes", "safe_field"):
return match.value # Don't scrub this field
return None # Use default scrubbing
logfire.configure(
scrubbing=logfire.ScrubbingOptions(callback=scrubbing_callback)
)
9. Sampling for High-Traffic Services
import logfire
# Sample 50% of traces
logfire.configure(sampling=logfire.SamplingOptions(head=0.5))
# Disable metrics to reduce volume
logfire.configure(metrics=False)
10. Testing
import logfire
from logfire.testing import CaptureLogfire
def test_user_creation(capfire: CaptureLogfire):
create_user("Alice", "[email protected]")
spans = capfire.exporter.exported_spans
assert len(spans) >= 1
assert spans[0].attributes["user_name"] == "Alice"
capfire.exporter.clear() # Clean up for next test
Available Integrations
| Category | Integration | Method |
|---|---|---|
| Web | FastAPI | logfire.instrument_fastapi(app) |
| Starlette | logfire.instrument_starlette(app) |
|
| Django | logfire.instrument_django() |
|
| Flask | logfire.instrument_flask(app) |
|
| AIOHTTP Server | logfire.instrument_aiohttp_server() |
|
| ASGI | logfire.instrument_asgi(app) |
|
| WSGI | logfire.instrument_wsgi(app) |
|
| HTTP | HTTPX | logfire.instrument_httpx() |
| Requests | logfire.instrument_requests() |
|
| AIOHTTP Client | logfire.instrument_aiohttp_client() |
|
| Database | SQLAlchemy | logfire.instrument_sqlalchemy(engine) |
| Asyncpg | logfire.instrument_asyncpg() |
|
| Psycopg | logfire.instrument_psycopg() |
|
| Redis | logfire.instrument_redis() |
|
| PyMongo | logfire.instrument_pymongo() |
|
| LLM | Pydantic AI | logfire.instrument_pydantic_ai() |
| OpenAI | logfire.instrument_openai() |
|
| Anthropic | logfire.instrument_anthropic() |
|
| MCP | logfire.instrument_mcp() |
|
| Tasks | Celery | logfire.instrument_celery() |
| AWS Lambda | logfire.instrument_aws_lambda() |
|
| Logging | Standard logging | logfire.instrument_logging() |
| Structlog | logfire.instrument_structlog() |
|
| Loguru | logfire.instrument_loguru() |
|
logfire.instrument_print() |
||
| Other | Pydantic | logfire.instrument_pydantic() |
| System Metrics | logfire.instrument_system_metrics() |
Common Pitfalls
| Issue | Symptom | Fix |
|---|---|---|
| Missing service name | Spans hard to find in UI | Set service_name in configure() |
| Late instrumentation | No spans captured | Call configure() before creating clients |
| High-cardinality attrs | Storage explosion | Use IDs, not full payloads as attributes |
| Console noise | Logs pollute stdout | Set console=False in production |
References
- Configuration Options - All
configure()parameters - Integrations Guide - Framework-specific setup
- Metrics Guide - Counter, gauge, histogram, system metrics
- Advanced Patterns - Sampling, scrubbing, suppression, testing
- Pitfalls & Troubleshooting - Common issues and solutions
- Official Docs
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.