jiatastic

logfire

2
0
# Install this skill:
npx skills add jiatastic/open-python-skills --skill "logfire"

Install specific skill from multi-skill repository

# Description

>

# SKILL.md


name: logfire
description: >
Structured observability with Pydantic Logfire and OpenTelemetry. Use when: (1) Adding traces/logs to Python APIs,
(2) Instrumenting FastAPI, HTTPX, SQLAlchemy, or LLMs, (3) Setting up service metadata,
(4) Configuring sampling or scrubbing sensitive data, (5) Testing observability code.


Logfire

Structured observability for Python using Pydantic Logfire - fast setup, powerful features, OpenTelemetry-compatible.

Quick Start

uv pip install logfire
import logfire

logfire.configure(service_name="my-api", service_version="1.0.0")
logfire.info("Application started")

Core Patterns

1. Service Configuration

Always set service metadata at startup:

import logfire

logfire.configure(
    service_name="backend",
    service_version="1.0.0",
    environment="production",
    console=False,           # Disable console output in production
    send_to_logfire=True,    # Send to Logfire platform
)

2. Framework Instrumentation

Instrument frameworks before creating clients/apps:

import logfire
from fastapi import FastAPI

# Configure FIRST
logfire.configure(service_name="backend")

# Then instrument
logfire.instrument_fastapi()
logfire.instrument_httpx()
logfire.instrument_sqlalchemy()

# Then create app
app = FastAPI()

3. Log Levels and Structured Logging

# All log levels (trace → fatal)
logfire.trace("Detailed trace", step=1)
logfire.debug("Debug context", variable=locals())
logfire.info("User action", action="login", success=True)
logfire.notice("Important event", event_type="milestone")
logfire.warn("Potential issue", threshold_exceeded=True)
logfire.error("Operation failed", error_code=500)
logfire.fatal("Critical failure", component="database")

# Python 3.11+ f-string magic (auto-extracts variables)
user_id = 123
status = "active"
logfire.info(f"User {user_id} status: {status}")
# Equivalent to: logfire.info("User {user_id}...", user_id=user_id, status=status)

# Exception logging with automatic traceback
try:
    risky_operation()
except Exception:
    logfire.exception("Operation failed", context="extra_info")

4. Manual Spans

# Spans for tracing operations
with logfire.span("Process order {order_id}", order_id="ORD-123"):
    logfire.info("Validating cart")
    # ... processing logic
    logfire.info("Order complete")

# Dynamic span attributes
with logfire.span("Database query") as span:
    results = execute_query()
    span.set_attribute("result_count", len(results))
    span.message = f"Query returned {len(results)} results"

5. Custom Metrics

# Counter - monotonically increasing
request_counter = logfire.metric_counter("http.requests", unit="1")
request_counter.add(1, {"endpoint": "/api/users", "method": "GET"})

# Gauge - current value
temperature = logfire.metric_gauge("temperature", unit="°C")
temperature.set(23.5)

# Histogram - distribution of values
latency = logfire.metric_histogram("request.duration", unit="ms")
latency.record(45.2, {"endpoint": "/api/data"})

6. LLM Observability

import logfire
from pydantic_ai import Agent

logfire.configure()
logfire.instrument_pydantic_ai()  # Traces all agent interactions

agent = Agent("openai:gpt-4o", system_prompt="You are helpful.")
result = agent.run_sync("Hello!")

7. Suppress Noisy Instrumentation

# Suppress entire scope (e.g., noisy library)
logfire.suppress_scopes("google.cloud.bigquery.opentelemetry_tracing")

# Suppress specific code block
with logfire.suppress_instrumentation():
    client.get("https://internal-healthcheck.local")  # Not traced

8. Sensitive Data Scrubbing

import logfire

# Add custom patterns to scrub
logfire.configure(
    scrubbing=logfire.ScrubbingOptions(
        extra_patterns=["api_key", "secret", "token"]
    )
)

# Custom callback for fine-grained control
def scrubbing_callback(match: logfire.ScrubMatch):
    if match.path == ("attributes", "safe_field"):
        return match.value  # Don't scrub this field
    return None  # Use default scrubbing

logfire.configure(
    scrubbing=logfire.ScrubbingOptions(callback=scrubbing_callback)
)

9. Sampling for High-Traffic Services

import logfire

# Sample 50% of traces
logfire.configure(sampling=logfire.SamplingOptions(head=0.5))

# Disable metrics to reduce volume
logfire.configure(metrics=False)

10. Testing

import logfire
from logfire.testing import CaptureLogfire

def test_user_creation(capfire: CaptureLogfire):
    create_user("Alice", "[email protected]")

    spans = capfire.exporter.exported_spans
    assert len(spans) >= 1
    assert spans[0].attributes["user_name"] == "Alice"

    capfire.exporter.clear()  # Clean up for next test

Available Integrations

Category Integration Method
Web FastAPI logfire.instrument_fastapi(app)
Starlette logfire.instrument_starlette(app)
Django logfire.instrument_django()
Flask logfire.instrument_flask(app)
AIOHTTP Server logfire.instrument_aiohttp_server()
ASGI logfire.instrument_asgi(app)
WSGI logfire.instrument_wsgi(app)
HTTP HTTPX logfire.instrument_httpx()
Requests logfire.instrument_requests()
AIOHTTP Client logfire.instrument_aiohttp_client()
Database SQLAlchemy logfire.instrument_sqlalchemy(engine)
Asyncpg logfire.instrument_asyncpg()
Psycopg logfire.instrument_psycopg()
Redis logfire.instrument_redis()
PyMongo logfire.instrument_pymongo()
LLM Pydantic AI logfire.instrument_pydantic_ai()
OpenAI logfire.instrument_openai()
Anthropic logfire.instrument_anthropic()
MCP logfire.instrument_mcp()
Tasks Celery logfire.instrument_celery()
AWS Lambda logfire.instrument_aws_lambda()
Logging Standard logging logfire.instrument_logging()
Structlog logfire.instrument_structlog()
Loguru logfire.instrument_loguru()
Print logfire.instrument_print()
Other Pydantic logfire.instrument_pydantic()
System Metrics logfire.instrument_system_metrics()

Common Pitfalls

Issue Symptom Fix
Missing service name Spans hard to find in UI Set service_name in configure()
Late instrumentation No spans captured Call configure() before creating clients
High-cardinality attrs Storage explosion Use IDs, not full payloads as attributes
Console noise Logs pollute stdout Set console=False in production

References

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.