Implement GitOps workflows with ArgoCD and Flux for automated, declarative Kubernetes...
npx skills add Mindrally/skills --skill "scipy-best-practices"
Install specific skill from multi-skill repository
# Description
Best practices for SciPy scientific computing, optimization, signal processing, and statistical analysis in Python
# SKILL.md
name: scipy-best-practices
description: Best practices for SciPy scientific computing, optimization, signal processing, and statistical analysis in Python
SciPy Best Practices
Expert guidelines for SciPy development, focusing on scientific computing, optimization, signal processing, and statistical analysis.
Code Style and Structure
- Write concise, technical Python code with accurate SciPy examples
- Prioritize numerical accuracy and computational efficiency
- Use functional programming patterns for mathematical operations
- Prefer vectorized operations over explicit loops
- Use descriptive variable names reflecting scientific context
- Follow PEP 8 style guidelines
scipy.optimize - Optimization
- Use
scipy.optimize.minimize()for general-purpose optimization - Choose appropriate method based on problem characteristics:
'BFGS'for smooth, unconstrained problems'L-BFGS-B'for bounded problems'SLSQP'for constrained optimization'Nelder-Mead'for non-differentiable functions- Provide gradients when available for faster convergence
- Use
scipy.optimize.curve_fit()for nonlinear least squares fitting - Use
scipy.optimize.root()for finding roots of equations
scipy.linalg - Linear Algebra
- Prefer
scipy.linalgovernumpy.linalgfor additional functionality - Use
scipy.linalg.solve()instead of computing matrix inverse - Leverage specialized solvers for structured matrices (banded, triangular)
- Use
scipy.linalg.lu_factor()andlu_solve()for multiple right-hand sides - Use sparse matrix solvers from
scipy.sparse.linalgfor large sparse systems
scipy.stats - Statistics
- Use distribution objects for probability calculations
- Leverage
scipy.stats.describe()for summary statistics - Use hypothesis testing functions:
ttest_ind(),chi2_contingency(),mannwhitneyu() - Generate random samples with
.rvs()method on distributions - Use
.fit()for parameter estimation from data
scipy.interpolate - Interpolation
- Use
scipy.interpolate.interp1d()for 1D interpolation - Use
scipy.interpolate.griddata()for scattered data interpolation - Choose appropriate interpolation method: 'linear', 'cubic', 'nearest'
- Use spline functions for smooth interpolation:
UnivariateSpline,BSpline - Consider
RegularGridInterpolatorfor regular grid data
scipy.integrate - Integration
- Use
scipy.integrate.quad()for single integrals - Use
scipy.integrate.dblquad(),tplquad()for multiple integrals - Use
scipy.integrate.solve_ivp()for ordinary differential equations - Choose appropriate ODE method: 'RK45', 'BDF', 'LSODA'
- Provide Jacobian for stiff systems to improve performance
scipy.signal - Signal Processing
- Use
scipy.signal.butter(),cheby1(),ellip()for filter design - Apply filters with
scipy.signal.filtfilt()for zero-phase filtering - Use
scipy.signal.welch()for power spectral density estimation - Use
scipy.signal.find_peaks()for peak detection - Leverage
scipy.signal.convolve()andcorrelate()for convolution
scipy.sparse - Sparse Matrices
- Use appropriate sparse format for your use case:
csr_matrixfor efficient row slicing and matrix-vector productscsc_matrixfor efficient column slicingcoo_matrixfor constructing sparse matriceslil_matrixfor incremental construction- Convert to optimal format before operations
- Use
scipy.sparse.linalgsolvers for sparse linear systems
Performance Optimization
- Use appropriate data types (
float64for precision,float32for memory) - Leverage BLAS/LAPACK through SciPy for optimized linear algebra
- Pre-allocate arrays when possible
- Use in-place operations when available
Error Handling and Validation
- Check convergence status of optimization routines
- Validate numerical results for reasonableness
- Handle ill-conditioned problems gracefully
- Use appropriate tolerances for convergence criteria
Testing Scientific Code
- Test against known analytical solutions
- Use
np.testing.assert_allclose()for numerical comparisons - Test edge cases and boundary conditions
- Verify conservation laws and invariants
Key Conventions
- Import specific submodules:
from scipy import optimize, stats, linalg - Use
snake_casefor variables and functions - Document algorithm choices and parameters
- Include convergence diagnostics in output
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.