ngxtm

azure-ai-search-python

0
0
# Install this skill:
npx skills add ngxtm/devkit --skill "azure-ai-search-python"

Install specific skill from multi-skill repository

# Description

Clean code patterns for Azure AI Search Python SDK (azure-search-documents). Use when building search applications, creating/managing indexes, implementing agentic retrieval with knowledge bases, or working with vector/hybrid search. Covers SearchClient, SearchIndexClient, SearchIndexerClient, and KnowledgeBaseRetrievalClient.

# SKILL.md


name: azure-ai-search-python
description: Clean code patterns for Azure AI Search Python SDK (azure-search-documents). Use when building search applications, creating/managing indexes, implementing agentic retrieval with knowledge bases, or working with vector/hybrid search. Covers SearchClient, SearchIndexClient, SearchIndexerClient, and KnowledgeBaseRetrievalClient.


Azure AI Search Python SDK

Write clean, idiomatic Python code for Azure AI Search using azure-search-documents.

Authentication Patterns

Microsoft Entra ID (preferred):

from azure.identity import DefaultAzureCredential
from azure.search.documents import SearchClient

credential = DefaultAzureCredential()
client = SearchClient(endpoint, index_name, credential)

API Key:

from azure.core.credentials import AzureKeyCredential
from azure.search.documents import SearchClient

client = SearchClient(endpoint, index_name, AzureKeyCredential(api_key))

Client Selection

Client Purpose
SearchClient Query indexes, upload/update/delete documents
SearchIndexClient Create/manage indexes, knowledge sources, knowledge bases
SearchIndexerClient Manage indexers, skillsets, data sources
KnowledgeBaseRetrievalClient Agentic retrieval with LLM-powered Q&A

Index Creation Pattern

from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
    SearchIndex, SearchField, VectorSearch, VectorSearchProfile,
    HnswAlgorithmConfiguration, AzureOpenAIVectorizer,
    AzureOpenAIVectorizerParameters, SemanticSearch,
    SemanticConfiguration, SemanticPrioritizedFields, SemanticField
)

index = SearchIndex(
    name=index_name,
    fields=[
        SearchField(name="id", type="Edm.String", key=True),
        SearchField(name="content", type="Edm.String", searchable=True),
        SearchField(name="embedding", type="Collection(Edm.Single)",
                   vector_search_dimensions=3072,
                   vector_search_profile_name="vector-profile"),
    ],
    vector_search=VectorSearch(
        profiles=[VectorSearchProfile(
            name="vector-profile",
            algorithm_configuration_name="hnsw-algo",
            vectorizer_name="openai-vectorizer"
        )],
        algorithms=[HnswAlgorithmConfiguration(name="hnsw-algo")],
        vectorizers=[AzureOpenAIVectorizer(
            vectorizer_name="openai-vectorizer",
            parameters=AzureOpenAIVectorizerParameters(
                resource_url=aoai_endpoint,
                deployment_name=embedding_deployment,
                model_name=embedding_model
            )
        )]
    ),
    semantic_search=SemanticSearch(
        default_configuration_name="semantic-config",
        configurations=[SemanticConfiguration(
            name="semantic-config",
            prioritized_fields=SemanticPrioritizedFields(
                content_fields=[SemanticField(field_name="content")]
            )
        )]
    )
)

index_client = SearchIndexClient(endpoint, credential)
index_client.create_or_update_index(index)

Document Operations

from azure.search.documents import SearchIndexingBufferedSender

# Batch upload with automatic batching
with SearchIndexingBufferedSender(endpoint, index_name, credential) as sender:
    sender.upload_documents(documents)

# Direct operations via SearchClient
search_client = SearchClient(endpoint, index_name, credential)
search_client.upload_documents(documents)      # Add new
search_client.merge_documents(documents)       # Update existing
search_client.merge_or_upload_documents(documents)  # Upsert
search_client.delete_documents(documents)      # Remove

Search Patterns

# Basic search
results = search_client.search(search_text="query")

# Vector search
from azure.search.documents.models import VectorizedQuery

results = search_client.search(
    search_text=None,
    vector_queries=[VectorizedQuery(
        vector=embedding,
        k_nearest_neighbors=5,
        fields="embedding"
    )]
)

# Hybrid search (vector + keyword)
results = search_client.search(
    search_text="query",
    vector_queries=[VectorizedQuery(vector=embedding, k_nearest_neighbors=5, fields="embedding")],
    query_type="semantic",
    semantic_configuration_name="semantic-config"
)

# With filters
results = search_client.search(
    search_text="query",
    filter="category eq 'technology'",
    select=["id", "title", "content"],
    top=10
)

Agentic Retrieval (Knowledge Bases)

For LLM-powered Q&A with answer synthesis, see references/agentic-retrieval.md.

Key concepts:
- Knowledge Source: Points to a search index
- Knowledge Base: Wraps knowledge sources + LLM for query planning and synthesis
- Output modes: EXTRACTIVE_DATA (raw chunks) or ANSWER_SYNTHESIS (LLM-generated answers)

Async Pattern

from azure.search.documents.aio import SearchClient

async with SearchClient(endpoint, index_name, credential) as client:
    results = await client.search(search_text="query")
    async for result in results:
        print(result["title"])

Best Practices

  1. Use environment variables for endpoints, keys, and deployment names
  2. Prefer DefaultAzureCredential over API keys for production
  3. Use SearchIndexingBufferedSender for batch uploads (handles batching/retries)
  4. Always define semantic configuration for agentic retrieval indexes
  5. Use create_or_update_index for idempotent index creation
  6. Close clients with context managers or explicit close()

Field Types Reference

EDM Type Python Notes
Edm.String str Searchable text
Edm.Int32 int Integer
Edm.Int64 int Long integer
Edm.Double float Floating point
Edm.Boolean bool True/False
Edm.DateTimeOffset datetime ISO 8601
Collection(Edm.Single) List[float] Vector embeddings
Collection(Edm.String) List[str] String arrays

Error Handling

from azure.core.exceptions import (
    HttpResponseError,
    ResourceNotFoundError,
    ResourceExistsError
)

try:
    result = search_client.get_document(key="123")
except ResourceNotFoundError:
    print("Document not found")
except HttpResponseError as e:
    print(f"Search error: {e.message}")

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.