ngxtm

foundry-sdk-python

0
0
# Install this skill:
npx skills add ngxtm/devkit --skill "foundry-sdk-python"

Install specific skill from multi-skill repository

# Description

Build AI applications using the Azure AI Projects Python SDK (azure-ai-projects). Use when working with Foundry project clients, creating versioned agents with PromptAgentDefinition, running evaluations, managing connections/deployments/datasets/indexes, or using OpenAI-compatible clients. This is the high-level Foundry SDK - for low-level agent operations, use azure-ai-agents-python skill.

# SKILL.md


name: foundry-sdk-python
description: Build AI applications using the Azure AI Projects Python SDK (azure-ai-projects). Use when working with Foundry project clients, creating versioned agents with PromptAgentDefinition, running evaluations, managing connections/deployments/datasets/indexes, or using OpenAI-compatible clients. This is the high-level Foundry SDK - for low-level agent operations, use azure-ai-agents-python skill.


Azure AI Projects Python SDK (Foundry SDK)

Build AI applications on Azure AI Foundry using the azure-ai-projects SDK.

Installation

pip install azure-ai-projects azure-identity

Environment Variables

AZURE_AI_PROJECT_ENDPOINT="https://<resource>.services.ai.azure.com/api/projects/<project>"
AZURE_AI_MODEL_DEPLOYMENT_NAME="gpt-4o-mini"

Authentication

import os
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient

credential = DefaultAzureCredential()
client = AIProjectClient(
    endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    credential=credential,
)

Client Operations Overview

Operation Access Purpose
client.agents .agents.* Agent CRUD, versions, threads, runs
client.connections .connections.* List/get project connections
client.deployments .deployments.* List model deployments
client.datasets .datasets.* Dataset management
client.indexes .indexes.* Index management
client.evaluations .evaluations.* Run evaluations
client.red_teams .red_teams.* Red team operations

Two Client Approaches

1. AIProjectClient (Native Foundry)

from azure.ai.projects import AIProjectClient

client = AIProjectClient(
    endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    credential=DefaultAzureCredential(),
)

# Use Foundry-native operations
agent = client.agents.create_agent(
    model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
    name="my-agent",
    instructions="You are helpful.",
)

2. OpenAI-Compatible Client

# Get OpenAI-compatible client from project
openai_client = client.get_openai_client()

# Use standard OpenAI API
response = openai_client.chat.completions.create(
    model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
    messages=[{"role": "user", "content": "Hello!"}],
)

Agent Operations

Create Agent (Basic)

agent = client.agents.create_agent(
    model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
    name="my-agent",
    instructions="You are a helpful assistant.",
)

Create Agent with Tools

from azure.ai.agents import CodeInterpreterTool, FileSearchTool

agent = client.agents.create_agent(
    model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
    name="tool-agent",
    instructions="You can execute code and search files.",
    tools=[CodeInterpreterTool(), FileSearchTool()],
)

Versioned Agents with PromptAgentDefinition

from azure.ai.projects.models import PromptAgentDefinition

# Create a versioned agent
agent_version = client.agents.create_version(
    agent_name="customer-support-agent",
    definition=PromptAgentDefinition(
        model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
        instructions="You are a customer support specialist.",
        tools=[],  # Add tools as needed
    ),
    version_label="v1.0",
)

See references/agents.md for detailed agent patterns.

Tools Overview

Tool Class Use Case
Code Interpreter CodeInterpreterTool Execute Python, generate files
File Search FileSearchTool RAG over uploaded documents
Bing Grounding BingGroundingTool Web search (requires connection)
Azure AI Search AzureAISearchTool Search your indexes
Function Calling FunctionTool Call your Python functions
OpenAPI OpenApiTool Call REST APIs
MCP McpTool Model Context Protocol servers
Memory Search MemorySearchTool Search agent memory stores
SharePoint SharepointGroundingTool Search SharePoint content

See references/tools.md for all tool patterns.

Thread and Message Flow

# 1. Create thread
thread = client.agents.threads.create()

# 2. Add message
client.agents.messages.create(
    thread_id=thread.id,
    role="user",
    content="What's the weather like?",
)

# 3. Create and process run
run = client.agents.runs.create_and_process(
    thread_id=thread.id,
    agent_id=agent.id,
)

# 4. Get response
if run.status == "completed":
    messages = client.agents.messages.list(thread_id=thread.id)
    for msg in messages:
        if msg.role == "assistant":
            print(msg.content[0].text.value)

Connections

# List all connections
connections = client.connections.list()
for conn in connections:
    print(f"{conn.name}: {conn.connection_type}")

# Get specific connection
connection = client.connections.get(connection_name="my-search-connection")

See references/connections.md for connection patterns.

Deployments

# List available model deployments
deployments = client.deployments.list()
for deployment in deployments:
    print(f"{deployment.name}: {deployment.model}")

See references/deployments.md for deployment patterns.

Datasets and Indexes

# List datasets
datasets = client.datasets.list()

# List indexes
indexes = client.indexes.list()

See references/datasets-indexes.md for data operations.

Evaluation

# Using OpenAI client for evals
openai_client = client.get_openai_client()

# Create evaluation with built-in evaluators
eval_run = openai_client.evals.runs.create(
    eval_id="my-eval",
    name="quality-check",
    data_source={
        "type": "custom",
        "item_references": [{"item_id": "test-1"}],
    },
    testing_criteria=[
        {"type": "fluency"},
        {"type": "task_adherence"},
    ],
)

See references/evaluation.md for evaluation patterns.

Async Client

from azure.ai.projects.aio import AIProjectClient

async with AIProjectClient(
    endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    credential=DefaultAzureCredential(),
) as client:
    agent = await client.agents.create_agent(...)
    # ... async operations

See references/async-patterns.md for async patterns.

Memory Stores

# Create memory store for agent
memory_store = client.agents.create_memory_store(
    name="conversation-memory",
)

# Attach to agent for persistent memory
agent = client.agents.create_agent(
    model=os.environ["AZURE_AI_MODEL_DEPLOYMENT_NAME"],
    name="memory-agent",
    tools=[MemorySearchTool()],
    tool_resources={"memory": {"store_ids": [memory_store.id]}},
)

Best Practices

  1. Use context managers for async client: async with AIProjectClient(...) as client:
  2. Clean up agents when done: client.agents.delete_agent(agent.id)
  3. Use create_and_process for simple runs, streaming for real-time UX
  4. Use versioned agents for production deployments
  5. Prefer connections for external service integration (AI Search, Bing, etc.)

SDK Comparison

Feature azure-ai-projects azure-ai-agents
Level High-level (Foundry) Low-level (Agents)
Client AIProjectClient AgentsClient
Versioning create_version() Not available
Connections Yes No
Deployments Yes No
Datasets/Indexes Yes No
Evaluation Via OpenAI client No
When to use Full Foundry integration Standalone agent apps

Reference Files

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.