pytorch

metal-kernel

97,036
26,678
# Install this skill:
npx skills add pytorch/pytorch --skill "metal-kernel"

Install specific skill from multi-skill repository

# Description

Write Metal/MPS kernels for PyTorch operators. Use when adding MPS device support to operators, implementing Metal shaders, or porting CUDA kernels to Apple Silicon. Covers native_functions.yaml dispatch, host-side operators, and Metal kernel implementation.

# SKILL.md


name: metal-kernel
description: Write Metal/MPS kernels for PyTorch operators. Use when adding MPS device support to operators, implementing Metal shaders, or porting CUDA kernels to Apple Silicon. Covers native_functions.yaml dispatch, host-side operators, and Metal kernel implementation.


Metal Kernel Writing Guide

This skill guides you through implementing Metal kernels for PyTorch operators on Apple Silicon.

Important: The goal of this skill is to use native Metal capabilities via the c10/metal/ infrastructure, NOT MPSGraph. Native Metal kernels provide better control, performance, and maintainability.

Overview

There are two workflows covered by this skill:

  1. Adding new MPS support - Implementing a new operator from scratch
  2. Migrating from MPSGraph - Converting existing MPSGraph-based operators to native Metal

Both workflows involve:
1. Update dispatch in aten/src/ATen/native/native_functions.yaml
2. Write Metal kernel in aten/src/ATen/native/mps/kernels/
3. Implement host-side stub in aten/src/ATen/native/mps/operations/

Step 1: Update native_functions.yaml

Location: aten/src/ATen/native/native_functions.yaml

For New Operators

Find the operator entry and add MPS dispatch:

# Simple MPS-specific implementation
- func: my_op(Tensor self) -> Tensor
  dispatch:
    CPU: my_op_cpu
    CUDA: my_op_cuda
    MPS: my_op_mps

# Shared implementation across devices (preferred for structured kernels)
- func: my_op.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
  dispatch:
    CPU, CUDA, MPS: my_op_out

# Structured kernel (preferred for new ops)
- func: my_op.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
  structured: True
  structured_inherits: TensorIteratorBase
  dispatch:
    CPU, CUDA, MPS: my_op_out

For Migrating from MPSGraph

When migrating an existing operator from MPSGraph to native Metal, consolidate the dispatch entry:

# BEFORE (MPSGraph-based, separate dispatch)
- func: atan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
  structured: True
  structured_inherits: TensorIteratorBase
  dispatch:
    CPU, CUDA: atan2_out
    MPS: atan2_out_mps  # Separate MPS implementation

# AFTER (native Metal, shared dispatch via stub)
- func: atan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
  structured: True
  structured_inherits: TensorIteratorBase
  dispatch:
    CPU, CUDA, MPS: atan2_out  # MPS now uses the same stub mechanism

Key change: Replace MPS: my_op_out_mps with adding MPS to the shared dispatch line (e.g., CPU, CUDA, MPS: my_op_out).

Dispatch naming conventions:
- MPS: function_name_mps - MPS-specific implementation (old MPSGraph pattern)
- CPU, CUDA, MPS: function_name - Shared stub implementation (native Metal pattern)

Step 2: Implement Metal Kernel

Location: aten/src/ATen/native/mps/kernels/

Unary Kernel Pattern

// MyKernel.metal
#include <c10/metal/indexing.h>
#include <c10/metal/utils.h>
#include <metal_stdlib>

using namespace metal;
using namespace c10::metal;

// Define operation functor
struct my_op_functor {
  template <typename T>
  inline T operator()(const T x) {
    return /* your operation */;
  }
};

// Register for supported types
REGISTER_UNARY_OP(my_op, float, float);
REGISTER_UNARY_OP(my_op, half, half);
REGISTER_UNARY_OP(my_op, bfloat, bfloat);

Binary Kernel Pattern

struct my_binary_functor {
  template <typename T>
  inline T operator()(const T a, const T b) {
    return /* your operation */;
  }
};

REGISTER_BINARY_OP(my_binary, float, float);
REGISTER_BINARY_OP(my_binary, half, half);

Binary Kernel Type Registration Macros

For binary operations, use the convenience macros defined in BinaryKernel.metal:

// Floating-point types only (float, half, bfloat)
REGISTER_FLOAT_BINARY_OP(my_op);

// Integral types with float output (for math ops like atan2, copysign)
// Registers: long->float, int->float, short->float, uchar->float, char->float, bool->float
REGISTER_INT2FLOAT_BINARY_OP(my_op);

// Integral types with same-type output (for bitwise/logical ops)
// Registers: long, int, short, uchar, char, bool
REGISTER_INTEGER_BINARY_OP(my_op);

// Floating-point with opmath precision (for ops needing higher precision)
REGISTER_OPMATH_FLOAT_BINARY_OP(my_op);

Common patterns:
- Math functions (atan2, copysign, logaddexp): Use both REGISTER_FLOAT_BINARY_OP and REGISTER_INT2FLOAT_BINARY_OP
- Comparison/logical ops (maximum, minimum): Use both REGISTER_FLOAT_BINARY_OP and REGISTER_INTEGER_BINARY_OP
- Arithmetic ops (add, sub, mul): Use both REGISTER_FLOAT_BINARY_OP and REGISTER_INTEGER_BINARY_OP

Example for atan2 (supports both float and int inputs):

struct atan2_functor {
  template <typename T, enable_if_t<is_floating_point_v<T>, bool> = true>
  inline T operator()(const T a, const T b) {
    return static_cast<T>(precise::atan2(float(a), float(b)));
  }
  template <typename T, enable_if_t<is_integral_v<T>, bool> = true>
  inline float operator()(const T a, const T b) {
    return precise::atan2(float(a), float(b));
  }
};

REGISTER_FLOAT_BINARY_OP(atan2);
REGISTER_INT2FLOAT_BINARY_OP(atan2);

With Scalar Parameter

struct my_alpha_functor {
  template <typename T>
  inline T operator()(const T a, const T b, const T alpha) {
    return a + c10::metal::mul(alpha, b);
  }
};

REGISTER_UNARY_ALPHA_OP(my_alpha, float, float, float);
REGISTER_UNARY_ALPHA_OP(my_alpha, half, half, half);

Type-Specialized Functor

struct special_functor {
  // Floating point types
  template <typename T, enable_if_t<is_scalar_floating_point_v<T>, bool> = true>
  inline T operator()(const T x) {
    return precise::exp(x);  // Use precise math
  }

  // Integral types
  template <typename T, enable_if_t<is_scalar_integral_v<T>, bool> = true>
  inline float operator()(const T x) {
    return precise::exp(float(x));
  }

  // Complex types (float2 for cfloat, half2 for chalf)
  template <typename T, enable_if_t<is_complex_v<T>, bool> = true>
  inline T operator()(const T x) {
    // x.x = real, x.y = imaginary
    return T(/* real */, /* imag */);
  }
};

Note on complex types: Complex numbers in Metal are represented as vector types:
- c10::complex<float> maps to float2 (x = real, y = imaginary)
- c10::complex<half> maps to half2

Use is_complex_v<T> to specialize for complex types in functors.

Available c10/metal Utilities

utils.h:
- opmath_t<T> - Operation math type (half->float)
- accum_t<T> - Accumulation type for reductions
- max(), min() with NaN propagation

special_math.h:
- precise::exp(), precise::log(), precise::sqrt()
- precise::sin(), precise::cos(), precise::tan()
- erf(), erfc(), erfinv()

indexing.h:
- REGISTER_UNARY_OP(name, in_type, out_type)
- REGISTER_BINARY_OP(name, in_type, out_type)
- REGISTER_UNARY_ALPHA_OP(name, in_type, alpha_type, out_type)

Step 3: Implement Host-Side Stub

Location: aten/src/ATen/native/mps/operations/

Choose or create an appropriate file based on operation type:
- UnaryKernel.mm - Single input operations via stub dispatch
- BinaryKernel.mm - Two input operations via stub dispatch
- UnaryOps.mm / BinaryOps.mm - Legacy MPSGraph implementations (for reference)
- ReduceOps.mm - Reductions (sum, mean, max, etc.)
- Create new file for distinct operation categories

Stub Registration Pattern (Preferred for Native Metal)

For structured kernels that use the TensorIterator pattern:

// In BinaryKernel.mm (or appropriate file)

static void my_op_mps_kernel(TensorIteratorBase& iter) {
  lib.exec_binary_kernel(iter, "my_op");  // "my_op" matches the functor name in .metal
}

// Register the MPS stub - this connects to the dispatch system
REGISTER_DISPATCH(my_op_stub, &my_op_mps_kernel)

For unary operations:

static void my_unary_mps_kernel(TensorIteratorBase& iter) {
  lib.exec_unary_kernel(iter, "my_unary");
}

REGISTER_DISPATCH(my_unary_stub, &my_unary_mps_kernel)

Migration: Removing Old MPSGraph Implementation

When migrating from MPSGraph, also remove the old implementation:

  1. Remove from BinaryOps.mm (or UnaryOps.mm):
  2. Delete the TORCH_IMPL_FUNC(my_op_out_mps) implementation
  3. Remove the corresponding #include <ATen/ops/my_op_native.h> header

  4. Add to BinaryKernel.mm (or UnaryKernel.mm):

  5. Add the static kernel function
  6. Add the REGISTER_DISPATCH call

Step 4: Compile

After making changes, compile to verify everything builds correctly:

cd build && ninja torch_cpu

Testing

Basic operator support is already tested by test_output_match in test/test_mps.py. After implementing an operator, enable testing by removing expected failures:

1. Remove from common_mps.py

Location: torch/testing/_internal/common_mps.py

Find and remove the operator from skip/xfail lists:

# Remove entries like:
MPS_XFAILLIST = {
    "my_op": ...,  # Remove this line
}

MPS_SKIPLIST = {
    "my_op": ...,  # Remove this line
}

2. Remove from OpInfo decorators

Location: torch/testing/_internal/common_methods_invocations.py (or related files)

Remove MPS-specific decorators from the OpInfo:

OpInfo(
    "my_op",
    # Remove decorators like:
    # decorators=[skipMPS, expectedFailureMPS("reason")],
    ...
)

3. Run tests to verify

# Run the specific operator test
python test/test_mps.py -k test_output_match_my_op

# Or run full MPS test suite
python test/test_mps.py

Checklist

  • [ ] Added MPS dispatch to native_functions.yaml
  • [ ] Implemented Metal kernel in kernels/
  • [ ] Implemented host-side operator in operations/
  • [ ] Handles empty tensors
  • [ ] Handles non-contiguous tensors
  • [ ] Supports required dtypes (float32, float16, bfloat16, and often complex types via float2/half2)
  • [ ] Removed expected failures from torch/testing/_internal/common_mps.py
  • [ ] Removed skip/xfail decorators from OpInfo (if applicable)

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.