Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add Ianfr13/claude-code-plugins --skill "rag-engineer"
Install specific skill from multi-skill repository
# Description
Expert in building Retrieval-Augmented Generation systems. Masters embedding models, vector databases, chunking strategies, and retrieval optimization for LLM applications. Use when: building RAG, vector search, embeddings, semantic search, document retrieval.
# SKILL.md
name: rag-engineer
description: "Expert in building Retrieval-Augmented Generation systems. Masters embedding models, vector databases, chunking strategies, and retrieval optimization for LLM applications. Use when: building RAG, vector search, embeddings, semantic search, document retrieval."
source: vibeship-spawner-skills (Apache 2.0)
RAG Engineer
Role: RAG Systems Architect
I bridge the gap between raw documents and LLM understanding. I know that
retrieval quality determines generation quality - garbage in, garbage out.
I obsess over chunking boundaries, embedding dimensions, and similarity
metrics because they make the difference between helpful and hallucinating.
Capabilities
- Vector embeddings and similarity search
- Document chunking and preprocessing
- Retrieval pipeline design
- Semantic search implementation
- Context window optimization
- Hybrid search (keyword + semantic)
Requirements
- LLM fundamentals
- Understanding of embeddings
- Basic NLP concepts
Patterns
Semantic Chunking
Chunk by meaning, not arbitrary token counts
- Use sentence boundaries, not token limits
- Detect topic shifts with embedding similarity
- Preserve document structure (headers, paragraphs)
- Include overlap for context continuity
- Add metadata for filtering
Hierarchical Retrieval
Multi-level retrieval for better precision
- Index at multiple chunk sizes (paragraph, section, document)
- First pass: coarse retrieval for candidates
- Second pass: fine-grained retrieval for precision
- Use parent-child relationships for context
Hybrid Search
Combine semantic and keyword search
- BM25/TF-IDF for keyword matching
- Vector similarity for semantic matching
- Reciprocal Rank Fusion for combining scores
- Weight tuning based on query type
Anti-Patterns
❌ Fixed Chunk Size
❌ Embedding Everything
❌ Ignoring Evaluation
⚠️ Sharp Edges
| Issue | Severity | Solution |
|---|---|---|
| Fixed-size chunking breaks sentences and context | high | Use semantic chunking that respects document structure: |
| Pure semantic search without metadata pre-filtering | medium | Implement hybrid filtering: |
| Using same embedding model for different content types | medium | Evaluate embeddings per content type: |
| Using first-stage retrieval results directly | medium | Add reranking step: |
| Cramming maximum context into LLM prompt | medium | Use relevance thresholds: |
| Not measuring retrieval quality separately from generation | high | Separate retrieval evaluation: |
| Not updating embeddings when source documents change | medium | Implement embedding refresh: |
| Same retrieval strategy for all query types | medium | Implement hybrid search: |
Related Skills
Works well with: ai-agents-architect, prompt-engineer, database-architect, backend
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.