Use when adding new error messages to React, or seeing "unknown error code" warnings.
npx skills add huggingface/skills --skill "hugging-face-datasets"
Install specific skill from multi-skill repository
# Description
Create and manage datasets on Hugging Face Hub. Supports initializing repos, defining configs/system prompts, streaming row updates, and SQL-based dataset querying/transformation. Designed to work alongside HF MCP server for comprehensive dataset workflows.
# SKILL.md
name: hugging-face-datasets
description: Create and manage datasets on Hugging Face Hub. Supports initializing repos, defining configs/system prompts, streaming row updates, and SQL-based dataset querying/transformation. Designed to work alongside HF MCP server for comprehensive dataset workflows.
Overview
This skill provides tools to manage datasets on the Hugging Face Hub with a focus on creation, configuration, content management, and SQL-based data manipulation. It is designed to complement the existing Hugging Face MCP server by providing dataset editing and querying capabilities.
Integration with HF MCP Server
- Use HF MCP Server for: Dataset discovery, search, and metadata retrieval
- Use This Skill for: Dataset creation, content editing, SQL queries, data transformation, and structured data formatting
Version
2.1.0
Dependencies
This skill uses PEP 723 scripts with inline dependency management
Scripts auto-install requirements when run with: uv run scripts/script_name.py
- uv (Python package manager)
- Getting Started: See "Usage Instructions" below for PEP 723 usage
Core Capabilities
1. Dataset Lifecycle Management
- Initialize: Create new dataset repositories with proper structure
- Configure: Store detailed configuration including system prompts and metadata
- Stream Updates: Add rows efficiently without downloading entire datasets
2. SQL-Based Dataset Querying (NEW)
Query any Hugging Face dataset using DuckDB SQL via scripts/sql_manager.py:
- Direct Queries: Run SQL on datasets using the hf:// protocol
- Schema Discovery: Describe dataset structure and column types
- Data Sampling: Get random samples for exploration
- Aggregations: Count, histogram, unique values analysis
- Transformations: Filter, join, reshape data with SQL
- Export & Push: Save results locally or push to new Hub repos
3. Multi-Format Dataset Support
Supports diverse dataset types through template system:
- Chat/Conversational: Chat templating, multi-turn dialogues, tool usage examples
- Text Classification: Sentiment analysis, intent detection, topic classification
- Question-Answering: Reading comprehension, factual QA, knowledge bases
- Text Completion: Language modeling, code completion, creative writing
- Tabular Data: Structured data for regression/classification tasks
- Custom Formats: Flexible schema definition for specialized needs
4. Quality Assurance Features
- JSON Validation: Ensures data integrity during uploads
- Batch Processing: Efficient handling of large datasets
- Error Recovery: Graceful handling of upload failures and conflicts
Usage Instructions
The skill includes two Python scripts that use PEP 723 inline dependency management:
All paths are relative to the directory containing this SKILL.md
file.
Scripts are run with:uv run scripts/script_name.py [arguments]
scripts/dataset_manager.py- Dataset creation and managementscripts/sql_manager.py- SQL-based dataset querying and transformation
Prerequisites
uvpackage manager installedHF_TOKENenvironment variable must be set with a Write-access token
SQL Dataset Querying (sql_manager.py)
Query, transform, and push Hugging Face datasets using DuckDB SQL. The hf:// protocol provides direct access to any public dataset (or private with token).
Quick Start
# Query a dataset
uv run scripts/sql_manager.py query \
--dataset "cais/mmlu" \
--sql "SELECT * FROM data WHERE subject='nutrition' LIMIT 10"
# Get dataset schema
uv run scripts/sql_manager.py describe --dataset "cais/mmlu"
# Sample random rows
uv run scripts/sql_manager.py sample --dataset "cais/mmlu" --n 5
# Count rows with filter
uv run scripts/sql_manager.py count --dataset "cais/mmlu" --where "subject='nutrition'"
SQL Query Syntax
Use data as the table name in your SQL - it gets replaced with the actual hf:// path:
-- Basic select
SELECT * FROM data LIMIT 10
-- Filtering
SELECT * FROM data WHERE subject='nutrition'
-- Aggregations
SELECT subject, COUNT(*) as cnt FROM data GROUP BY subject ORDER BY cnt DESC
-- Column selection and transformation
SELECT question, choices[answer] AS correct_answer FROM data
-- Regex matching
SELECT * FROM data WHERE regexp_matches(question, 'nutrition|diet')
-- String functions
SELECT regexp_replace(question, '\n', '') AS cleaned FROM data
Common Operations
1. Explore Dataset Structure
# Get schema
uv run scripts/sql_manager.py describe --dataset "cais/mmlu"
# Get unique values in column
uv run scripts/sql_manager.py unique --dataset "cais/mmlu" --column "subject"
# Get value distribution
uv run scripts/sql_manager.py histogram --dataset "cais/mmlu" --column "subject" --bins 20
2. Filter and Transform
# Complex filtering with SQL
uv run scripts/sql_manager.py query \
--dataset "cais/mmlu" \
--sql "SELECT subject, COUNT(*) as cnt FROM data GROUP BY subject HAVING cnt > 100"
# Using transform command
uv run scripts/sql_manager.py transform \
--dataset "cais/mmlu" \
--select "subject, COUNT(*) as cnt" \
--group-by "subject" \
--order-by "cnt DESC" \
--limit 10
3. Create Subsets and Push to Hub
# Query and push to new dataset
uv run scripts/sql_manager.py query \
--dataset "cais/mmlu" \
--sql "SELECT * FROM data WHERE subject='nutrition'" \
--push-to "username/mmlu-nutrition-subset" \
--private
# Transform and push
uv run scripts/sql_manager.py transform \
--dataset "ibm/duorc" \
--config "ParaphraseRC" \
--select "question, answers" \
--where "LENGTH(question) > 50" \
--push-to "username/duorc-long-questions"
4. Export to Local Files
# Export to Parquet
uv run scripts/sql_manager.py export \
--dataset "cais/mmlu" \
--sql "SELECT * FROM data WHERE subject='nutrition'" \
--output "nutrition.parquet" \
--format parquet
# Export to JSONL
uv run scripts/sql_manager.py export \
--dataset "cais/mmlu" \
--sql "SELECT * FROM data LIMIT 100" \
--output "sample.jsonl" \
--format jsonl
5. Working with Dataset Configs/Splits
# Specify config (subset)
uv run scripts/sql_manager.py query \
--dataset "ibm/duorc" \
--config "ParaphraseRC" \
--sql "SELECT * FROM data LIMIT 5"
# Specify split
uv run scripts/sql_manager.py query \
--dataset "cais/mmlu" \
--split "test" \
--sql "SELECT COUNT(*) FROM data"
# Query all splits
uv run scripts/sql_manager.py query \
--dataset "cais/mmlu" \
--split "*" \
--sql "SELECT * FROM data LIMIT 10"
6. Raw SQL with Full Paths
For complex queries or joining datasets:
uv run scripts/sql_manager.py raw --sql "
SELECT a.*, b.*
FROM 'hf://datasets/dataset1@~parquet/default/train/*.parquet' a
JOIN 'hf://datasets/dataset2@~parquet/default/train/*.parquet' b
ON a.id = b.id
LIMIT 100
"
Python API Usage
from sql_manager import HFDatasetSQL
sql = HFDatasetSQL()
# Query
results = sql.query("cais/mmlu", "SELECT * FROM data WHERE subject='nutrition' LIMIT 10")
# Get schema
schema = sql.describe("cais/mmlu")
# Sample
samples = sql.sample("cais/mmlu", n=5, seed=42)
# Count
count = sql.count("cais/mmlu", where="subject='nutrition'")
# Histogram
dist = sql.histogram("cais/mmlu", "subject")
# Filter and transform
results = sql.filter_and_transform(
"cais/mmlu",
select="subject, COUNT(*) as cnt",
group_by="subject",
order_by="cnt DESC",
limit=10
)
# Push to Hub
url = sql.push_to_hub(
"cais/mmlu",
"username/nutrition-subset",
sql="SELECT * FROM data WHERE subject='nutrition'",
private=True
)
# Export locally
sql.export_to_parquet("cais/mmlu", "output.parquet", sql="SELECT * FROM data LIMIT 100")
sql.close()
HF Path Format
DuckDB uses the hf:// protocol to access datasets:
hf://datasets/{dataset_id}@{revision}/{config}/{split}/*.parquet
Examples:
- hf://datasets/cais/mmlu@~parquet/default/train/*.parquet
- hf://datasets/ibm/duorc@~parquet/ParaphraseRC/test/*.parquet
The @~parquet revision provides auto-converted Parquet files for any dataset format.
Useful DuckDB SQL Functions
-- String functions
LENGTH(column) -- String length
regexp_replace(col, '\n', '') -- Regex replace
regexp_matches(col, 'pattern') -- Regex match
LOWER(col), UPPER(col) -- Case conversion
-- Array functions
choices[0] -- Array indexing (0-based)
array_length(choices) -- Array length
unnest(choices) -- Expand array to rows
-- Aggregations
COUNT(*), SUM(col), AVG(col)
GROUP BY col HAVING condition
-- Sampling
USING SAMPLE 10 -- Random sample
USING SAMPLE 10 (RESERVOIR, 42) -- Reproducible sample
-- Window functions
ROW_NUMBER() OVER (PARTITION BY col ORDER BY col2)
Dataset Creation (dataset_manager.py)
Recommended Workflow
1. Discovery (Use HF MCP Server):
# Use HF MCP tools to find existing datasets
search_datasets("conversational AI training")
get_dataset_details("username/dataset-name")
2. Creation (Use This Skill):
# Initialize new dataset
uv run scripts/dataset_manager.py init --repo_id "your-username/dataset-name" [--private]
# Configure with detailed system prompt
uv run scripts/dataset_manager.py config --repo_id "your-username/dataset-name" --system_prompt "$(cat system_prompt.txt)"
3. Content Management (Use This Skill):
# Quick setup with any template
uv run scripts/dataset_manager.py quick_setup \
--repo_id "your-username/dataset-name" \
--template classification
# Add data with template validation
uv run scripts/dataset_manager.py add_rows \
--repo_id "your-username/dataset-name" \
--template qa \
--rows_json "$(cat your_qa_data.json)"
Template-Based Data Structures
1. Chat Template (--template chat)
{
"messages": [
{"role": "user", "content": "Natural user request"},
{"role": "assistant", "content": "Response with tool usage"},
{"role": "tool", "content": "Tool response", "tool_call_id": "call_123"}
],
"scenario": "Description of use case",
"complexity": "simple|intermediate|advanced"
}
2. Classification Template (--template classification)
{
"text": "Input text to be classified",
"label": "classification_label",
"confidence": 0.95,
"metadata": {"domain": "technology", "language": "en"}
}
3. QA Template (--template qa)
{
"question": "What is the question being asked?",
"answer": "The complete answer",
"context": "Additional context if needed",
"answer_type": "factual|explanatory|opinion",
"difficulty": "easy|medium|hard"
}
4. Completion Template (--template completion)
{
"prompt": "The beginning text or context",
"completion": "The expected continuation",
"domain": "code|creative|technical|conversational",
"style": "description of writing style"
}
5. Tabular Template (--template tabular)
{
"columns": [
{"name": "feature1", "type": "numeric", "description": "First feature"},
{"name": "target", "type": "categorical", "description": "Target variable"}
],
"data": [
{"feature1": 123, "target": "class_a"},
{"feature1": 456, "target": "class_b"}
]
}
Advanced System Prompt Template
For high-quality training data generation:
You are an AI assistant expert at using MCP tools effectively.
## MCP SERVER DEFINITIONS
[Define available servers and tools]
## TRAINING EXAMPLE STRUCTURE
[Specify exact JSON schema for chat templating]
## QUALITY GUIDELINES
[Detail requirements for realistic scenarios, progressive complexity, proper tool usage]
## EXAMPLE CATEGORIES
[List development workflows, debugging scenarios, data management tasks]
Example Categories & Templates
The skill includes diverse training examples beyond just MCP usage:
Available Example Sets:
- training_examples.json - MCP tool usage examples (debugging, project setup, database analysis)
- diverse_training_examples.json - Broader scenarios including:
- Educational Chat - Explaining programming concepts, tutorials
- Git Workflows - Feature branches, version control guidance
- Code Analysis - Performance optimization, architecture review
- Content Generation - Professional writing, creative brainstorming
- Codebase Navigation - Legacy code exploration, systematic analysis
- Conversational Support - Problem-solving, technical discussions
Using Different Example Sets:
# Add MCP-focused examples
uv run scripts/dataset_manager.py add_rows --repo_id "your-username/dataset-name" \
--rows_json "$(cat examples/training_examples.json)"
# Add diverse conversational examples
uv run scripts/dataset_manager.py add_rows --repo_id "your-username/dataset-name" \
--rows_json "$(cat examples/diverse_training_examples.json)"
# Mix both for comprehensive training data
uv run scripts/dataset_manager.py add_rows --repo_id "your-username/dataset-name" \
--rows_json "$(jq -s '.[0] + .[1]' examples/training_examples.json examples/diverse_training_examples.json)"
Commands Reference
List Available Templates:
uv run scripts/dataset_manager.py list_templates
Quick Setup (Recommended):
uv run scripts/dataset_manager.py quick_setup --repo_id "your-username/dataset-name" --template classification
Manual Setup:
# Initialize repository
uv run scripts/dataset_manager.py init --repo_id "your-username/dataset-name" [--private]
# Configure with system prompt
uv run scripts/dataset_manager.py config --repo_id "your-username/dataset-name" --system_prompt "Your prompt here"
# Add data with validation
uv run scripts/dataset_manager.py add_rows \
--repo_id "your-username/dataset-name" \
--template qa \
--rows_json '[{"question": "What is AI?", "answer": "Artificial Intelligence..."}]'
View Dataset Statistics:
uv run scripts/dataset_manager.py stats --repo_id "your-username/dataset-name"
Error Handling
- Repository exists: Script will notify and continue with configuration
- Invalid JSON: Clear error message with parsing details
- Network issues: Automatic retry for transient failures
- Token permissions: Validation before operations begin
Combined Workflow Examples
Example 1: Create Training Subset from Existing Dataset
# 1. Explore the source dataset
uv run scripts/sql_manager.py describe --dataset "cais/mmlu"
uv run scripts/sql_manager.py histogram --dataset "cais/mmlu" --column "subject"
# 2. Query and create subset
uv run scripts/sql_manager.py query \
--dataset "cais/mmlu" \
--sql "SELECT * FROM data WHERE subject IN ('nutrition', 'anatomy', 'clinical_knowledge')" \
--push-to "username/mmlu-medical-subset" \
--private
Example 2: Transform and Reshape Data
# Transform MMLU to QA format with correct answers extracted
uv run scripts/sql_manager.py query \
--dataset "cais/mmlu" \
--sql "SELECT question, choices[answer] as correct_answer, subject FROM data" \
--push-to "username/mmlu-qa-format"
Example 3: Merge Multiple Dataset Splits
# Export multiple splits and combine
uv run scripts/sql_manager.py export \
--dataset "cais/mmlu" \
--split "*" \
--output "mmlu_all.parquet"
Example 4: Quality Filtering
# Filter for high-quality examples
uv run scripts/sql_manager.py query \
--dataset "squad" \
--sql "SELECT * FROM data WHERE LENGTH(context) > 500 AND LENGTH(question) > 20" \
--push-to "username/squad-filtered"
Example 5: Create Custom Training Dataset
# 1. Query source data
uv run scripts/sql_manager.py export \
--dataset "cais/mmlu" \
--sql "SELECT question, subject FROM data WHERE subject='nutrition'" \
--output "nutrition_source.jsonl" \
--format jsonl
# 2. Process with your pipeline (add answers, format, etc.)
# 3. Push processed data
uv run scripts/dataset_manager.py init --repo_id "username/nutrition-training"
uv run scripts/dataset_manager.py add_rows \
--repo_id "username/nutrition-training" \
--template qa \
--rows_json "$(cat processed_data.json)"
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.