Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add itechmeat/llm-code --skill "agent-browser"
Install specific skill from multi-skill repository
# Description
Headless browser automation CLI for AI agents. Covers commands, refs, sessions, snapshots, cloud providers, profiles. Keywords: agent-browser, browser automation, refs, snapshot.
# SKILL.md
name: agent-browser
description: "Headless browser automation CLI for AI agents. Covers commands, refs, sessions, snapshots, cloud providers, profiles. Keywords: agent-browser, browser automation, refs, snapshot."
version: "0.8.0"
release_date: "2026-01-26"
Agent Browser
Headless browser automation CLI for AI agents. Fast Rust CLI with Node.js fallback.
Works with: Claude Code, Cursor, GitHub Copilot, OpenAI Codex, Google Gemini, opencode.
Quick Navigation
| Topic | Reference |
|---|---|
| Installation | installation.md |
| Commands | commands.md |
| Refs | refs.md |
| Advanced | advanced.md |
When to Use
- Automating browser tasks in AI agent workflows
- Web scraping with AI-friendly output
- Testing web applications with LLM agents
- Managing multiple browser sessions with isolated auth
Core Concepts
Refs (Element References)
The snapshot command returns an accessibility tree where each element has a unique ref like @e1, @e2:
- Deterministic - ref points to exact element from snapshot
- Fast - no DOM re-query needed
- AI-friendly - LLMs can reliably parse and use refs
Architecture
Client-daemon architecture:
- Rust CLI - parses commands, communicates with daemon
- Node.js Daemon - manages Playwright browser instance
Daemon starts automatically and persists between commands.
Quick Example
# Navigate and get snapshot
agent-browser open example.com
agent-browser snapshot # Get accessibility tree with refs
agent-browser click @e2 # Click by ref from snapshot
agent-browser fill @e3 "[email protected]" # Fill input by ref
agent-browser get text @e1 # Get text by ref
agent-browser screenshot page.png # Save screenshot
agent-browser close
AI Workflow Pattern
Optimal workflow for AI agents:
# 1. Navigate and get snapshot
agent-browser open example.com
agent-browser snapshot -i --json # AI parses tree and refs
# 2. AI identifies target refs from snapshot
# 3. Execute actions using refs
agent-browser click @e2
agent-browser fill @e3 "input text"
# 4. Get new snapshot if page changed
agent-browser snapshot -i --json
Headed Mode (Debugging)
agent-browser open example.com --headed
JSON Output
Use --json for machine-readable output:
agent-browser snapshot --json
agent-browser get text @e1 --json
agent-browser is visible @e2 --json
Critical Prohibitions
- Do not use CSS/XPath selectors when refs are available (use @e1, @e2, etc.)
- Do not forget to close sessions when done
- Do not assume element positions without taking a fresh snapshot
- Do not use old refs after page navigation or content changes (re-snapshot)
Common Commands
# Navigation
agent-browser open <url>
agent-browser back / forward / reload
agent-browser close
# Interaction
agent-browser click <sel>
agent-browser fill <sel> <text>
agent-browser press <key>
agent-browser hover <sel>
agent-browser select <sel> <val>
agent-browser download <sel> <path> # v0.7+
# Info
agent-browser get text <sel>
agent-browser get url
agent-browser get title
agent-browser is visible <sel>
# Snapshots & Screenshots
agent-browser snapshot -i --json
agent-browser screenshot [path]
Links
- Official docs: https://agent-browser.dev/
- Changelog: https://agent-browser.dev/changelog
- GitHub: https://github.com/vercel-labs/agent-browser
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.