namesreallyblank

rlm-process

2
0
# Install this skill:
npx skills add namesreallyblank/Clorch --skill "rlm-process"

Install specific skill from multi-skill repository

# Description

Process large contexts using RLM (Recursive Language Model) patterns - chunking, filtering, recursive sub-calls

# SKILL.md


name: rlm-process
description: Process large contexts using RLM (Recursive Language Model) patterns - chunking, filtering, recursive sub-calls
impact: HIGH
impactMetrics:
- "Handles 100x beyond normal context limits"
- "28-58% better accuracy on information-dense tasks"
activation:
patterns:
- "/rlm"
- "rlm process"
- "recursive"
triggers:
- "rlm"
- "large context"
- "process all"
- "analyze entire"


RLM Process

Process large contexts using Recursive Language Model patterns from arXiv:2512.24601.

When to Use

Use /rlm-process when you need to:
- Analyze entire codebases without context overflow
- Process all pairs/instances in a dataset
- Aggregate information across many files
- Search through millions of tokens effectively

How It Works

┌─────────────────────────────────────────────────────────────┐
│  RLM Processing Pipeline                                     │
├─────────────────────────────────────────────────────────────┤
│                                                             │
│  1. ASSESS: Measure context size                            │
│     └─> Determine if RLM needed (>10K tokens)               │
│                                                             │
│  2. FILTER: Search without loading                          │
│     └─> Use grep/glob to narrow relevant content            │
│                                                             │
│  3. CHUNK: Break into processable pieces                    │
│     └─> By file | By section | By line batch                │
│                                                             │
│  4. PROCESS: Recursive sub-calls                            │
│     └─> Each chunk → sub-agent → structured result          │
│                                                             │
│  5. AGGREGATE: Combine results                              │
│     └─> Store in REPL state → synthesize final answer       │
│                                                             │
└─────────────────────────────────────────────────────────────┘

Usage

Basic Usage

/rlm-process <query> <context-reference>

Examples

Codebase Analysis:

/rlm-process "Count all functions that handle authentication" src/

Cross-File Search:

/rlm-process "Find all pairs of files that import the same module" packages/

Large File Processing:

/rlm-process "Summarize each section of this document" large-doc.md

Data Aggregation:

/rlm-process "What labels are most common?" data/questions.jsonl

Invocation

When this skill is invoked, spawn the RLM processor agent:

Task tool:
  subagent_type: "rlm-processor"
  model: "sonnet"
  prompt: |
    ## RLM Task
    Query: <user's query>
    Context Reference: <path or reference>

    Use RLM patterns to process this context efficiently.
    Store results in REPL state.

Chunking Strategies

Strategy Use When Example
by-file Processing codebase Each .py file separately
by-section Document with headers Each ## section
by-line-batch Line-oriented data 100 lines per batch
pairwise Need to compare pairs All (A,B) combinations
adaptive Unknown structure Let RLM decide

Results

Results are stored in REPL state:

# Check results
python3 ~/.claude/scripts/repl_state.py get rlm_result

# See all chunks
python3 ~/.claude/scripts/repl_state.py list | grep chunk_

When NOT to Use

  • Small contexts (<10K tokens): Direct read is faster
  • Simple lookups: Just use grep/read
  • Real-time requirements: RLM has overhead

Integration

The /rlm-process skill integrates with:
- REPL State (/repl): Stores intermediate and final results
- Scout Agent: Can be used for chunk exploration
- Worker Agents: Spawned for parallel chunk processing

Reference

Based on "Recursive Language Models" (arXiv:2512.24601)
- MIT CSAIL: Alex L. Zhang, Tim Kraska, Omar Khattab
- Key insight: Treat context as environment variable, not neural input

Session Implementation

When the user invokes this skill:

  1. Parse the query and context reference from args
  2. Check context size using file stats or line counts
  3. Spawn rlm-processor agent with the task
  4. Report results from REPL state when complete

Example spawn:

# Orchestrator spawns RLM processor
Task(
    subagent_type="rlm-processor",
    model="sonnet",
    prompt=f"""
## RLM Task
Query: {user_query}
Context Reference: {context_ref}
Context Size: {estimated_size}

## Constraints
- Max tokens to read directly: 50000
- Output format: Markdown with citations

Process this context using RLM patterns.
Store final result in REPL state key: rlm_result
""",
    run_in_background=False
)

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.