ngxtm

Convert PCM to WAV (see scripts/pcm_to_wav.py)

0
0
# Install this skill:
npx skills add ngxtm/devkit --skill "Convert PCM to WAV (see scripts/pcm_to_wav.py)"

Install specific skill from multi-skill repository

# Description

Generate AI-powered podcast-style audio narratives using Azure OpenAI's GPT Realtime Mini model via WebSocket. Use when building text-to-speech features, audio narrative generation, podcast creation from content, or integrating with Azure OpenAI Realtime API for real audio output. Covers full-stack implementation from React frontend to Python FastAPI backend with WebSocket streaming.

# SKILL.md

---
name: podcast-generation
description: Generate AI-powered podcast-style audio narratives using Azure OpenAI's GPT Realtime Mini model via WebSocket. Use when building text-to-speech features, audio narrative generation, podcast creation from content, or integrating with Azure OpenAI Realtime API for real audio output. Covers full-stack implementation from React frontend to Python FastAPI backend with WebSocket streaming.
---

# Podcast Generation with GPT Realtime Mini

Generate real audio narratives from text content using Azure OpenAI's Realtime API.

## Quick Start

1. Configure environment variables for Realtime API
2. Connect via WebSocket to Azure OpenAI Realtime endpoint
3. Send text prompt, collect PCM audio chunks + transcript
4. Convert PCM to WAV format
5. Return base64-encoded audio to frontend for playback

## Environment Configuration

```env
AZURE_OPENAI_AUDIO_API_KEY=your_realtime_api_key
AZURE_OPENAI_AUDIO_ENDPOINT=https://your-resource.cognitiveservices.azure.com
AZURE_OPENAI_AUDIO_DEPLOYMENT=gpt-realtime-mini

Note: Endpoint should NOT include /openai/v1/ - just the base URL.

Core Workflow

Backend Audio Generation

from openai import AsyncOpenAI
import base64

# Convert HTTPS endpoint to WebSocket URL
ws_url = endpoint.replace("https://", "wss://") + "/openai/v1"

client = AsyncOpenAI(
    websocket_base_url=ws_url,
    api_key=api_key
)

audio_chunks = []
transcript_parts = []

async with client.realtime.connect(model="gpt-realtime-mini") as conn:
    # Configure for audio-only output
    await conn.session.update(session={
        "output_modalities": ["audio"],
        "instructions": "You are a narrator. Speak naturally."
    })

    # Send text to narrate
    await conn.conversation.item.create(item={
        "type": "message",
        "role": "user",
        "content": [{"type": "input_text", "text": prompt}]
    })

    await conn.response.create()

    # Collect streaming events
    async for event in conn:
        if event.type == "response.output_audio.delta":
            audio_chunks.append(base64.b64decode(event.delta))
        elif event.type == "response.output_audio_transcript.delta":
            transcript_parts.append(event.delta)
        elif event.type == "response.done":
            break

# Convert PCM to WAV (see scripts/pcm_to_wav.py)
pcm_audio = b''.join(audio_chunks)
wav_audio = pcm_to_wav(pcm_audio, sample_rate=24000)

Frontend Audio Playback

// Convert base64 WAV to playable blob
const base64ToBlob = (base64, mimeType) => {
  const bytes = atob(base64);
  const arr = new Uint8Array(bytes.length);
  for (let i = 0; i < bytes.length; i++) arr[i] = bytes.charCodeAt(i);
  return new Blob([arr], { type: mimeType });
};

const audioBlob = base64ToBlob(response.audio_data, 'audio/wav');
const audioUrl = URL.createObjectURL(audioBlob);
new Audio(audioUrl).play();

Voice Options

Voice Character
alloy Neutral
echo Warm
fable Expressive
onyx Deep
nova Friendly
shimmer Clear

Realtime API Events

  • response.output_audio.delta - Base64 audio chunk
  • response.output_audio_transcript.delta - Transcript text
  • response.done - Generation complete
  • error - Handle with event.error.message

Audio Format

  • Input: Text prompt
  • Output: PCM audio (24kHz, 16-bit, mono)
  • Storage: Base64-encoded WAV

References

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.