ncklrs

product-discovery

1
0
# Install this skill:
npx skills add ncklrs/startup-os-skills --skill "product-discovery"

Install specific skill from multi-skill repository

# Description

Expert product discovery guidance for user research and problem validation. Use when conducting user interviews, validating problems, applying jobs-to-be-done framework, sizing opportunities, customer segmentation, competitive analysis, prototype testing, usability testing, designing surveys, or synthesizing research insights. Covers discovery sprints, continuous discovery, and research operations.

# SKILL.md


name: product-discovery
description: Expert product discovery guidance for user research and problem validation. Use when conducting user interviews, validating problems, applying jobs-to-be-done framework, sizing opportunities, customer segmentation, competitive analysis, prototype testing, usability testing, designing surveys, or synthesizing research insights. Covers discovery sprints, continuous discovery, and research operations.


Product Discovery

Strategic user research and problem validation expertise β€” from interview techniques and JTBD to opportunity sizing and insight synthesis.

Philosophy

Great products start with great problems. Discovery is how you find problems worth solving for people who will pay.

The best product discovery:
1. Talk to users, not stakeholders β€” Customers know their problems, not solutions
2. Validate problems before solutions β€” Build the right thing, then build it right
3. Quantify and qualify β€” Numbers tell you what, conversations tell you why
4. Continuous over batched β€” Weekly habits beat quarterly projects

How This Skill Works

When invoked, apply the guidelines in rules/ organized by:

  • research-* β€” User interview techniques, survey design, research ops
  • discovery-* β€” Problem discovery, JTBD framework, validation
  • analysis-* β€” Synthesis, segmentation, competitive analysis
  • testing-* β€” Prototype testing, usability testing

Core Frameworks

Discovery Process

Phase Activities Outputs
Explore Interviews, observation, data mining Problem space map
Validate Problem interviews, surveys, experiments Validated problems
Prioritize Opportunity scoring, segmentation Prioritized roadmap
Test Prototype testing, usability studies Solution validation

Jobs-to-be-Done Framework

                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚    FUNCTIONAL JOB   β”‚
                    β”‚   (What they do)    β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                               β”‚
              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
              β”‚                β”‚                β”‚
              β–Ό                β–Ό                β–Ό
       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚ EMOTIONALβ”‚     β”‚  SOCIAL  β”‚     β”‚ CONTEXT  β”‚
       β”‚   JOB    β”‚     β”‚   JOB    β”‚     β”‚ (When/   β”‚
       β”‚ (Feel)   β”‚     β”‚ (Appear) β”‚     β”‚  Where)  β”‚
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Opportunity Scoring (OST)

Factor Weight Description
Importance 40% How important is this job to the customer?
Satisfaction 30% How satisfied are they with current solutions?
Frequency 20% How often do they encounter this problem?
Willingness to Pay 10% Will they pay to solve this?

Opportunity Score = Importance + max(Importance - Satisfaction, 0)

Research Method Selection

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                   GENERATIVE RESEARCH                       β”‚
β”‚              (Discover unknown unknowns)                    β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”               β”‚
β”‚  β”‚Contextual β”‚  β”‚ Discovery β”‚  β”‚ Diary    β”‚               β”‚
β”‚  β”‚ Inquiry   β”‚  β”‚ Interviewsβ”‚  β”‚ Studies  β”‚               β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜               β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                   EVALUATIVE RESEARCH                       β”‚
β”‚              (Validate known hypotheses)                    β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”               β”‚
β”‚  β”‚ Usability β”‚  β”‚  A/B      β”‚  β”‚ Prototype β”‚               β”‚
β”‚  β”‚ Testing   β”‚  β”‚  Testing  β”‚  β”‚ Testing   β”‚               β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜               β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                   QUANTITATIVE RESEARCH                     β”‚
β”‚              (Measure and prioritize)                       β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”               β”‚
β”‚  β”‚  Surveys  β”‚  β”‚ Analytics β”‚  β”‚ Card      β”‚               β”‚
β”‚  β”‚           β”‚  β”‚  Review   β”‚  β”‚ Sorting   β”‚               β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜               β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Customer Segmentation Matrix

Dimension Consumer (B2C) Business (B2B)
Demographics Age, income, location Company size, industry, revenue
Behavior Usage patterns, purchase history Buying process, tech stack
Psychographics Values, lifestyle, attitudes Company culture, risk tolerance
Needs Problems, goals, aspirations Business outcomes, KPIs

Continuous Discovery Cadence

Weekly:
β”œβ”€β”€ 2-3 customer interviews
β”œβ”€β”€ Review analytics/feedback
└── Update opportunity backlog

Monthly:
β”œβ”€β”€ Synthesis session
β”œβ”€β”€ Prioritization review
└── Stakeholder alignment

Quarterly:
β”œβ”€β”€ Deep-dive research sprint
β”œβ”€β”€ Competitive analysis refresh
└── Segment review

Interview Quick Reference

Interview Type When to Use Key Questions
Discovery Exploring problem space "Tell me about the last time..."
Problem Validating specific pain "How painful is this 1-10? Why?"
Solution Testing concepts "Would this solve your problem?"
JTBD Understanding motivation "What were you trying to accomplish?"
Usability Testing interfaces "What do you expect to happen?"

Anti-Patterns

  • Solution-first discovery β€” Falling in love with solutions before validating problems
  • Leading the witness β€” Asking questions that suggest desired answers
  • Confirmation bias β€” Only hearing what supports your hypothesis
  • Sample of one β€” Making decisions from a single interview
  • Proxy research β€” Asking salespeople instead of customers
  • Feature requests as research β€” Users ask for features, not problems
  • Analysis paralysis β€” Researching forever, never deciding
  • HiPPO-driven β€” Highest Paid Person's Opinion overriding data

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.