Refactor high-complexity React components in Dify frontend. Use when `pnpm analyze-component...
npx skills add zechenzhangAGI/AI-research-SKILLs --skill "nemo-evaluator-sdk"
Install specific skill from multi-skill repository
# Description
Evaluates LLMs across 100+ benchmarks from 18+ harnesses (MMLU, HumanEval, GSM8K, safety, VLM) with multi-backend execution. Use when needing scalable evaluation on local Docker, Slurm HPC, or cloud platforms. NVIDIA's enterprise-grade platform with container-first architecture for reproducible benchmarking.
# SKILL.md
name: nemo-evaluator-sdk
description: Evaluates LLMs across 100+ benchmarks from 18+ harnesses (MMLU, HumanEval, GSM8K, safety, VLM) with multi-backend execution. Use when needing scalable evaluation on local Docker, Slurm HPC, or cloud platforms. NVIDIA's enterprise-grade platform with container-first architecture for reproducible benchmarking.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Evaluation, NeMo, NVIDIA, Benchmarking, MMLU, HumanEval, Multi-Backend, Slurm, Docker, Reproducible, Enterprise]
dependencies: [nemo-evaluator-launcher>=0.1.25, docker]
NeMo Evaluator SDK - Enterprise LLM Benchmarking
Quick Start
NeMo Evaluator SDK evaluates LLMs across 100+ benchmarks from 18+ harnesses using containerized, reproducible evaluation with multi-backend execution (local Docker, Slurm HPC, Lepton cloud).
Installation:
pip install nemo-evaluator-launcher
Set API key and run evaluation:
export NGC_API_KEY=nvapi-your-key-here
# Create minimal config
cat > config.yaml << 'EOF'
defaults:
- execution: local
- deployment: none
- _self_
execution:
output_dir: ./results
target:
api_endpoint:
model_id: meta/llama-3.1-8b-instruct
url: https://integrate.api.nvidia.com/v1/chat/completions
api_key_name: NGC_API_KEY
evaluation:
tasks:
- name: ifeval
EOF
# Run evaluation
nemo-evaluator-launcher run --config-dir . --config-name config
View available tasks:
nemo-evaluator-launcher ls tasks
Common Workflows
Workflow 1: Evaluate Model on Standard Benchmarks
Run core academic benchmarks (MMLU, GSM8K, IFEval) on any OpenAI-compatible endpoint.
Checklist:
Standard Evaluation:
- [ ] Step 1: Configure API endpoint
- [ ] Step 2: Select benchmarks
- [ ] Step 3: Run evaluation
- [ ] Step 4: Check results
Step 1: Configure API endpoint
# config.yaml
defaults:
- execution: local
- deployment: none
- _self_
execution:
output_dir: ./results
target:
api_endpoint:
model_id: meta/llama-3.1-8b-instruct
url: https://integrate.api.nvidia.com/v1/chat/completions
api_key_name: NGC_API_KEY
For self-hosted endpoints (vLLM, TRT-LLM):
target:
api_endpoint:
model_id: my-model
url: http://localhost:8000/v1/chat/completions
api_key_name: "" # No key needed for local
Step 2: Select benchmarks
Add tasks to your config:
evaluation:
tasks:
- name: ifeval # Instruction following
- name: gpqa_diamond # Graduate-level QA
env_vars:
HF_TOKEN: HF_TOKEN # Some tasks need HF token
- name: gsm8k_cot_instruct # Math reasoning
- name: humaneval # Code generation
Step 3: Run evaluation
# Run with config file
nemo-evaluator-launcher run \
--config-dir . \
--config-name config
# Override output directory
nemo-evaluator-launcher run \
--config-dir . \
--config-name config \
-o execution.output_dir=./my_results
# Limit samples for quick testing
nemo-evaluator-launcher run \
--config-dir . \
--config-name config \
-o +evaluation.nemo_evaluator_config.config.params.limit_samples=10
Step 4: Check results
# Check job status
nemo-evaluator-launcher status <invocation_id>
# List all runs
nemo-evaluator-launcher ls runs
# View results
cat results/<invocation_id>/<task>/artifacts/results.yml
Workflow 2: Run Evaluation on Slurm HPC Cluster
Execute large-scale evaluation on HPC infrastructure.
Checklist:
Slurm Evaluation:
- [ ] Step 1: Configure Slurm settings
- [ ] Step 2: Set up model deployment
- [ ] Step 3: Launch evaluation
- [ ] Step 4: Monitor job status
Step 1: Configure Slurm settings
# slurm_config.yaml
defaults:
- execution: slurm
- deployment: vllm
- _self_
execution:
hostname: cluster.example.com
account: my_slurm_account
partition: gpu
output_dir: /shared/results
walltime: "04:00:00"
nodes: 1
gpus_per_node: 8
Step 2: Set up model deployment
deployment:
checkpoint_path: /shared/models/llama-3.1-8b
tensor_parallel_size: 2
data_parallel_size: 4
max_model_len: 4096
target:
api_endpoint:
model_id: llama-3.1-8b
# URL auto-generated by deployment
Step 3: Launch evaluation
nemo-evaluator-launcher run \
--config-dir . \
--config-name slurm_config
Step 4: Monitor job status
# Check status (queries sacct)
nemo-evaluator-launcher status <invocation_id>
# View detailed info
nemo-evaluator-launcher info <invocation_id>
# Kill if needed
nemo-evaluator-launcher kill <invocation_id>
Workflow 3: Compare Multiple Models
Benchmark multiple models on the same tasks for comparison.
Checklist:
Model Comparison:
- [ ] Step 1: Create base config
- [ ] Step 2: Run evaluations with overrides
- [ ] Step 3: Export and compare results
Step 1: Create base config
# base_eval.yaml
defaults:
- execution: local
- deployment: none
- _self_
execution:
output_dir: ./comparison_results
evaluation:
nemo_evaluator_config:
config:
params:
temperature: 0.01
parallelism: 4
tasks:
- name: mmlu_pro
- name: gsm8k_cot_instruct
- name: ifeval
Step 2: Run evaluations with model overrides
# Evaluate Llama 3.1 8B
nemo-evaluator-launcher run \
--config-dir . \
--config-name base_eval \
-o target.api_endpoint.model_id=meta/llama-3.1-8b-instruct \
-o target.api_endpoint.url=https://integrate.api.nvidia.com/v1/chat/completions
# Evaluate Mistral 7B
nemo-evaluator-launcher run \
--config-dir . \
--config-name base_eval \
-o target.api_endpoint.model_id=mistralai/mistral-7b-instruct-v0.3 \
-o target.api_endpoint.url=https://integrate.api.nvidia.com/v1/chat/completions
Step 3: Export and compare
# Export to MLflow
nemo-evaluator-launcher export <invocation_id_1> --dest mlflow
nemo-evaluator-launcher export <invocation_id_2> --dest mlflow
# Export to local JSON
nemo-evaluator-launcher export <invocation_id> --dest local --format json
# Export to Weights & Biases
nemo-evaluator-launcher export <invocation_id> --dest wandb
Workflow 4: Safety and Vision-Language Evaluation
Evaluate models on safety benchmarks and VLM tasks.
Checklist:
Safety/VLM Evaluation:
- [ ] Step 1: Configure safety tasks
- [ ] Step 2: Set up VLM tasks (if applicable)
- [ ] Step 3: Run evaluation
Step 1: Configure safety tasks
evaluation:
tasks:
- name: aegis # Safety harness
- name: wildguard # Safety classification
- name: garak # Security probing
Step 2: Configure VLM tasks
# For vision-language models
target:
api_endpoint:
type: vlm # Vision-language endpoint
model_id: nvidia/llama-3.2-90b-vision-instruct
url: https://integrate.api.nvidia.com/v1/chat/completions
evaluation:
tasks:
- name: ocrbench # OCR evaluation
- name: chartqa # Chart understanding
- name: mmmu # Multimodal understanding
When to Use vs Alternatives
Use NeMo Evaluator when:
- Need 100+ benchmarks from 18+ harnesses in one platform
- Running evaluations on Slurm HPC clusters or cloud
- Requiring reproducible containerized evaluation
- Evaluating against OpenAI-compatible APIs (vLLM, TRT-LLM, NIMs)
- Need enterprise-grade evaluation with result export (MLflow, W&B)
Use alternatives instead:
- lm-evaluation-harness: Simpler setup for quick local evaluation
- bigcode-evaluation-harness: Focused only on code benchmarks
- HELM: Stanford's broader evaluation (fairness, efficiency)
- Custom scripts: Highly specialized domain evaluation
Supported Harnesses and Tasks
| Harness | Task Count | Categories |
|---|---|---|
lm-evaluation-harness |
60+ | MMLU, GSM8K, HellaSwag, ARC |
simple-evals |
20+ | GPQA, MATH, AIME |
bigcode-evaluation-harness |
25+ | HumanEval, MBPP, MultiPL-E |
safety-harness |
3 | Aegis, WildGuard |
garak |
1 | Security probing |
vlmevalkit |
6+ | OCRBench, ChartQA, MMMU |
bfcl |
6 | Function calling v2/v3 |
mtbench |
2 | Multi-turn conversation |
livecodebench |
10+ | Live coding evaluation |
helm |
15 | Medical domain |
nemo-skills |
8 | Math, science, agentic |
Common Issues
Issue: Container pull fails
Ensure NGC credentials are configured:
docker login nvcr.io -u '$oauthtoken' -p $NGC_API_KEY
Issue: Task requires environment variable
Some tasks need HF_TOKEN or JUDGE_API_KEY:
evaluation:
tasks:
- name: gpqa_diamond
env_vars:
HF_TOKEN: HF_TOKEN # Maps env var name to env var
Issue: Evaluation timeout
Increase parallelism or reduce samples:
-o +evaluation.nemo_evaluator_config.config.params.parallelism=8
-o +evaluation.nemo_evaluator_config.config.params.limit_samples=100
Issue: Slurm job not starting
Check Slurm account and partition:
execution:
account: correct_account
partition: gpu
qos: normal # May need specific QOS
Issue: Different results than expected
Verify configuration matches reported settings:
evaluation:
nemo_evaluator_config:
config:
params:
temperature: 0.0 # Deterministic
num_fewshot: 5 # Check paper's fewshot count
CLI Reference
| Command | Description |
|---|---|
run |
Execute evaluation with config |
status <id> |
Check job status |
info <id> |
View detailed job info |
ls tasks |
List available benchmarks |
ls runs |
List all invocations |
export <id> |
Export results (mlflow/wandb/local) |
kill <id> |
Terminate running job |
Configuration Override Examples
# Override model endpoint
-o target.api_endpoint.model_id=my-model
-o target.api_endpoint.url=http://localhost:8000/v1/chat/completions
# Add evaluation parameters
-o +evaluation.nemo_evaluator_config.config.params.temperature=0.5
-o +evaluation.nemo_evaluator_config.config.params.parallelism=8
-o +evaluation.nemo_evaluator_config.config.params.limit_samples=50
# Change execution settings
-o execution.output_dir=/custom/path
-o execution.mode=parallel
# Dynamically set tasks
-o 'evaluation.tasks=[{name: ifeval}, {name: gsm8k}]'
Python API Usage
For programmatic evaluation without the CLI:
from nemo_evaluator.core.evaluate import evaluate
from nemo_evaluator.api.api_dataclasses import (
EvaluationConfig,
EvaluationTarget,
ApiEndpoint,
EndpointType,
ConfigParams
)
# Configure evaluation
eval_config = EvaluationConfig(
type="mmlu_pro",
output_dir="./results",
params=ConfigParams(
limit_samples=10,
temperature=0.0,
max_new_tokens=1024,
parallelism=4
)
)
# Configure target endpoint
target_config = EvaluationTarget(
api_endpoint=ApiEndpoint(
model_id="meta/llama-3.1-8b-instruct",
url="https://integrate.api.nvidia.com/v1/chat/completions",
type=EndpointType.CHAT,
api_key="nvapi-your-key-here"
)
)
# Run evaluation
result = evaluate(eval_cfg=eval_config, target_cfg=target_config)
Advanced Topics
Multi-backend execution: See references/execution-backends.md
Configuration deep-dive: See references/configuration.md
Adapter and interceptor system: See references/adapter-system.md
Custom benchmark integration: See references/custom-benchmarks.md
Requirements
- Python: 3.10-3.13
- Docker: Required for local execution
- NGC API Key: For pulling containers and using NVIDIA Build
- HF_TOKEN: Required for some benchmarks (GPQA, MMLU)
Resources
- GitHub: https://github.com/NVIDIA-NeMo/Evaluator
- NGC Containers: nvcr.io/nvidia/eval-factory/
- NVIDIA Build: https://build.nvidia.com (free hosted models)
- Documentation: https://github.com/NVIDIA-NeMo/Evaluator/tree/main/docs
# Supported AI Coding Agents
This skill is compatible with the SKILL.md standard and works with all major AI coding agents:
Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.