|
|
Use this skill when the user asks to save, remember, recall, or organize memories. Triggers on: 'remember this', 'save this', 'note this', 'what did we discuss about...', 'check your notes',...
Use this skill when the user asks to save, remember, recall, or organize memories. Triggers on: 'remember this', 'save this', 'note this', 'what did we discuss about...', 'check your notes',...
>
|
์์ด์ ํธ/์คํฌ ์คํ ๊ธฐ์ฌ๋๋ฅผ ๋ถ์ํ๊ณ ๋ฆฌํฌํธ๋ฅผ ์์ฑํฉ๋๋ค. stream.jsonl์ ์คํ ๋ก๊ทธ๋ฅผ ํ์ฑํ์ฌ ํธ์ถ ํ์, ์ฑ๊ณต๋ฅ , ์์๋ฅผ ๊ณ์ฐํฉ๋๋ค. ๋ด์ฅ ์์ด์ ํธ(general-purpose, Explore, Plan ๋ฑ)๋ ์ ์ธํ๊ณ ์ปค์คํ ์์ด์ ํธ/์คํฌ๋ง ๋ถ์ํฉ๋๋ค. "๊ธฐ์ฌ๋ ๋ถ์ํด์ค", "์ด์ฃผ์ ์์ด์ ํธ", "์์ด์ ํธ ํต๊ณ" ๋ฑ์ ์์ฒญ ์ ์ฌ์ฉํฉ๋๋ค.
Feature-first init: create or reuse worktree/branch and seed per-feature context. Git-aware and idempotent.
Build Python agents with Agentica SDK - @agentic decorator, spawn(), persistence, MCP integration
|
|
|
|-
This skill should be used when the user asks to "optimize an agent with GEPA", "use reflective optimization", "optimize ReAct agents", "provide feedback metrics", mentions "GEPA optimizer", "LLM...
LLM application architecture expert for RAG, prompting, agents, and production AI systemsUse when "rag system, prompt engineering, llm application, ai agent, structured output, chain of thought,...
้้ข็ณป็ปไธปๆงAgentใๅ่ฐ็ญ็น้้ใ้้ข็ๆใ้้ขๅฎกๆ ธไธไธช็ฏ่๏ผๆฏๆ่ฟญไปฃ็ดๅฐไบงๅบๅๆ ผ้้ขใ่งฆๅๆนๅผ๏ผ(1)"ๅผๅงไปๆฅ้้ข"ๅฏๅจๅฎๆดๆต็จ (2)"ไปๆฅAI็ญ็น"ๅช้้็ญ็นไธ็ๆ้้ข (3)"ๆๆไธไธช้้ข"่ฟๅ ฅๅไธช้้ขๅๆ (4)"ๆจ่ไธไบๅฅฝ็้้ข"็ดๆฅ่พๅบๆจ่ใ่พๅบไฟๅญๅฐObsidian้้ขๅบใ
This skill provides a complete SEO content workflow for creating, analyzing, and optimizing long-form blog content. Use when the user wants to research topics, write SEO-optimized articles,...
This skill should be used when the user asks to "design agent tools", "create tool descriptions", "reduce tool complexity", "implement MCP tools", or mentions tool consolidation, architectural...
Implements agents using Deep Agents. Use when building agents with create_deep_agent, configuring backends, defining subagents, adding middleware, or setting up human-in-the-loop workflows.
Production-ready patterns for building LLM applications. Covers RAG pipelines, agent architectures, prompt IDEs, and LLMOps monitoring. Use when designing AI applications, implementing RAG,...