OmidZamani

dspy-gepa-reflective

20
4
# Install this skill:
npx skills add OmidZamani/dspy-skills --skill "dspy-gepa-reflective"

Install specific skill from multi-skill repository

# Description

This skill should be used when the user asks to "optimize an agent with GEPA", "use reflective optimization", "optimize ReAct agents", "provide feedback metrics", mentions "GEPA optimizer", "LLM reflection", "execution trajectories", "agentic systems optimization", or needs to optimize complex multi-step agents using textual feedback on execution traces.

# SKILL.md


name: dspy-gepa-reflective
version: "1.0.0"
dspy-compatibility: "3.1.2"
description: This skill should be used when the user asks to "optimize an agent with GEPA", "use reflective optimization", "optimize ReAct agents", "provide feedback metrics", mentions "GEPA optimizer", "LLM reflection", "execution trajectories", "agentic systems optimization", or needs to optimize complex multi-step agents using textual feedback on execution traces.
allowed-tools:
- Read
- Write
- Glob
- Grep


DSPy GEPA Optimizer

Goal

Optimize complex agentic systems using LLM reflection on full execution traces with Pareto-based evolutionary search.

When to Use

  • Agentic systems with tool use
  • When you have rich textual feedback on failures
  • Complex multi-step workflows
  • Instruction-only optimization needed

Inputs

Input Type Description
program dspy.Module Agent or complex program
trainset list[dspy.Example] Training examples
metric callable Must return (score, feedback) tuple
reflection_lm dspy.LM Strong LM for reflection (GPT-4)
auto str "light", "medium", "heavy"

Outputs

Output Type Description
compiled_program dspy.Module Reflectively optimized program

Workflow

Phase 1: Define Feedback Metric

GEPA requires metrics that return textual feedback:

def gepa_metric(example, pred, trace=None):
    """Must return (score, feedback) tuple."""
    is_correct = example.answer.lower() in pred.answer.lower()

    if is_correct:
        feedback = "Correct. The answer accurately addresses the question."
    else:
        feedback = f"Incorrect. Expected '{example.answer}' but got '{pred.answer}'. The model may have misunderstood the question or retrieved irrelevant information."

    return is_correct, feedback

Phase 2: Setup Agent

import dspy

def search(query: str) -> list[str]:
    """Search knowledge base for relevant information."""
    rm = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
    results = rm(query, k=3)
    return results if isinstance(results, list) else [results]

def calculate(expression: str) -> float:
    """Safely evaluate mathematical expressions."""
    with dspy.PythonInterpreter() as interp:
        return interp(expression)

agent = dspy.ReAct("question -> answer", tools=[search, calculate])

Phase 3: Optimize with GEPA

dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"))

optimizer = dspy.GEPA(
    metric=gepa_metric,
    reflection_lm=dspy.LM("openai/gpt-4o"),  # Strong model for reflection
    auto="medium"
)

compiled_agent = optimizer.compile(agent, trainset=trainset)

Production Example

import dspy
from dspy.evaluate import Evaluate
import logging

logger = logging.getLogger(__name__)

class ResearchAgent(dspy.Module):
    def __init__(self):
        self.react = dspy.ReAct(
            "question -> answer",
            tools=[self.search, self.summarize]
        )

    def search(self, query: str) -> list[str]:
        """Search for relevant documents."""
        rm = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
        results = rm(query, k=5)
        return results if isinstance(results, list) else [results]

    def summarize(self, text: str) -> str:
        """Summarize long text into key points."""
        summarizer = dspy.Predict("text -> summary")
        return summarizer(text=text).summary

    def forward(self, question):
        return self.react(question=question)

def detailed_feedback_metric(example, pred, trace=None):
    """Rich feedback for GEPA reflection."""
    expected = example.answer.lower().strip()
    actual = pred.answer.lower().strip() if pred.answer else ""

    # Exact match
    if expected == actual:
        return 1.0, "Perfect match. Answer is correct and concise."

    # Partial match
    if expected in actual or actual in expected:
        return 0.7, f"Partial match. Expected '{example.answer}', got '{pred.answer}'. Answer contains correct info but may be verbose or incomplete."

    # Check for key terms
    expected_terms = set(expected.split())
    actual_terms = set(actual.split())
    overlap = len(expected_terms & actual_terms) / max(len(expected_terms), 1)

    if overlap > 0.5:
        return 0.5, f"Some overlap. Expected '{example.answer}', got '{pred.answer}'. Key terms present but answer structure differs."

    return 0.0, f"Incorrect. Expected '{example.answer}', got '{pred.answer}'. The agent may need better search queries or reasoning."

def optimize_research_agent(trainset, devset):
    """Full GEPA optimization pipeline."""

    dspy.configure(lm=dspy.LM("openai/gpt-4o-mini"))

    agent = ResearchAgent()

    # Convert metric for evaluation (just score)
    def eval_metric(example, pred, trace=None):
        score, _ = detailed_feedback_metric(example, pred, trace)
        return score

    evaluator = Evaluate(devset=devset, num_threads=8, metric=eval_metric)
    baseline = evaluator(agent)
    logger.info(f"Baseline: {baseline:.2%}")

    # GEPA optimization
    optimizer = dspy.GEPA(
        metric=detailed_feedback_metric,
        reflection_lm=dspy.LM("openai/gpt-4o"),
        auto="medium",
        enable_tool_optimization=True  # Also optimize tool descriptions
    )

    compiled = optimizer.compile(agent, trainset=trainset)
    optimized = evaluator(compiled)
    logger.info(f"Optimized: {optimized:.2%}")

    compiled.save("research_agent_gepa.json")
    return compiled

Tool Optimization

GEPA can jointly optimize predictor instructions AND tool descriptions:

optimizer = dspy.GEPA(
    metric=gepa_metric,
    reflection_lm=dspy.LM("openai/gpt-4o"),
    auto="medium",
    enable_tool_optimization=True  # Optimize tool docstrings too
)

Best Practices

  1. Rich feedback - More detailed feedback = better reflection
  2. Strong reflection LM - Use GPT-4 or Claude for reflection
  3. Agentic focus - Best for ReAct and multi-tool systems
  4. Trace analysis - GEPA analyzes full execution trajectories

Limitations

  • Requires custom feedback metrics (not just scores)
  • Expensive: uses strong LM for reflection
  • Newer optimizer, less battle-tested than MIPROv2
  • Best for instruction optimization, less for demos

# Supported AI Coding Agents

This skill is compatible with the SKILL.md standard and works with all major AI coding agents:

Learn more about the SKILL.md standard and how to use these skills with your preferred AI coding agent.